Spaces:
Sleeping
Sleeping
from typing import Annotated | |
from fastapi import APIRouter, UploadFile, File, Body | |
from fastapi.responses import JSONResponse | |
import openai | |
import io | |
import os | |
from pypdf import PdfReader | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Qdrant | |
from langchain.schema import Document | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.llms import OpenAI | |
from db import vector_store | |
router = APIRouter() | |
_chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff") | |
async def index_doc(name: Annotated[str, Body()], fileName: Annotated[str, Body()], file: UploadFile = File(...)): | |
_db = vector_store.get_instance(name) | |
if not _db: | |
return JSONResponse(status_code=404, content={}) | |
async for doc in generate_documents(file, fileName): | |
print(doc) | |
_db.add_documents([doc]) | |
#todo return something sensible | |
return JSONResponse(status_code=200, content={"name": name}) | |
async def search(name: str, query: str): | |
_db = vector_store.get_instance(name) | |
print(query) | |
docs = _db.similarity_search(query=query) | |
print(docs) | |
answer = _chain.run(input_documents=docs, question=query) | |
return JSONResponse(status_code=200, content={"answer": answer, "files": [d.metadata["file"] for d in docs]}) | |
async def generate_documents(file: UploadFile, fileName: str): | |
num=0 | |
async for txt in convert_documents(file): | |
num += 1 | |
document = Document(page_content=txt,metadata={"file": fileName, "page": num}) | |
yield document | |
async def convert_documents(file: UploadFile): | |
#parse pdf document | |
if file.content_type == 'application/pdf': | |
content = await file.read() | |
pdf_reader = PdfReader(io.BytesIO(content)) | |
try: | |
for page in pdf_reader.pages: | |
yield page.extract_text() | |
except Exception as e: | |
print(f"Exception {e}") | |
else: | |
return |