Spaces:
Sleeping
Sleeping
from abc import abstractmethod | |
from functools import cache | |
import os | |
from qdrant_client import QdrantClient | |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings | |
from langchain.vectorstores import Qdrant, ElasticVectorSearch, VectorStore | |
from qdrant_client.models import VectorParams, Distance | |
from db.embedding import Embedding, EMBEDDINGS | |
class Store: | |
def get_embedding(): | |
embedding = os.getenv("EMBEDDING") | |
if not embedding: | |
return EMBEDDINGS["OPEN_AI"] | |
return EMBEDDINGS[embedding] | |
def get_instance(): | |
vector_store = os.getenv("STORE") | |
if vector_store == "ELASTIC": | |
return ElasticVectorStore(Store.get_embedding()) | |
elif vector_store == "QDRANT": | |
return QdrantVectorStore(Store.get_embedding()) | |
else: | |
raise ValueError(f"Invalid vector store {vector_store}") | |
def __init__(self, embedding: Embedding): | |
self.embedding = embedding | |
def get_collection(self, collection: str="test") -> VectorStore: | |
""" | |
get an instance of vector store | |
of collection | |
""" | |
pass | |
def create_collection(self, collection: str) -> None: | |
""" | |
create an instance of vector store | |
with collection name | |
""" | |
pass | |
def list_collections(self) -> list[dict]: | |
""" | |
Return a list of collections in the vecot store. | |
""" | |
pass | |
class ElasticVectorStore(Store): | |
def __init__(self, embeddings): | |
super().__init__(embeddings) | |
def get_collection(self, collection:str) -> ElasticVectorSearch: | |
return ElasticVectorSearch(elasticsearch_url= os.getenv("ES_URL"), | |
index_name= collection, embedding=self.embedding.embedding) | |
def create_collection(self, collection: str) -> None: | |
store = self.get_collection(collection) | |
store.create_index(store.client,collection, dict()) | |
def list_collections(self) -> list[dict]: | |
#TODO: not impelented | |
return [] | |
class QdrantVectorStore(Store): | |
def __init__(self, embeddings): | |
super().__init__(embeddings) | |
self.client = QdrantClient(url=os.getenv("QDRANT_URL"), | |
api_key=os.getenv("QDRANT_API_KEY")) | |
def get_collection(self, collection: str) -> Qdrant: | |
return Qdrant(client=self.client,collection_name=collection, | |
embeddings=self.embedding.embedding) | |
def create_collection(self, collection: str) -> None: | |
self.client.create_collection(collection_name=collection, | |
vectors_config=VectorParams(size=self.embedding.dimension, | |
distance=Distance.COSINE)) | |
def list_collections(self) -> list[dict]: | |
""" return a list of collections. | |
""" | |
return [ c.dict() for i,c in enumerate(self.client.get_collections().collections)] | |