janar's picture
reference
c224647
from typing import Annotated
from fastapi import APIRouter, UploadFile, File, Body
from fastapi.responses import JSONResponse
import openai
import io
import os
from pypdf import PdfReader
from langchain.schema import Document
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.text_splitter import SentenceTransformersTokenTextSplitter
from db.vector_store import Store
router = APIRouter()
_chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff", verbose=True)
@router.get("/v1/datasets/{name}/answer")
async def answer(name: str, query: str):
""" Answer a question from the doc
Parameters:
- `name` of the doc.
- `query` to be answered.
Return:
a string answer to the query
"""
_db = Store.get_instance().get_collection(name)
print(query)
docs = _db.similarity_search_with_score(query=query)
print(docs)
answer = _chain.run(input_documents=[tup[0] for tup in docs], question=query)
return JSONResponse(status_code=200, content={"answer": answer, "metadata": [
{"file": d[0].metadata['file'], "page" : d[0].metadata['page'], "score": d[1]} for d in docs]})
@router.get("/v1/datasets")
async def list() -> list[dict]:
""" List all the datasets avaialble to query.
:return:
list of datasets
"""
#TODO surface more metadata for individual datasets
return Store.get_instance().list_collections()