import gradio as gr from PIL import Image from ultralytics import YOLO import requests import json import logging logging.basicConfig(level=logging.INFO) model = YOLO("Bottles_Cans_Classify_v1.pt") def detect_objects(images): results = model(images) classes={ 0:"bottle_25cl", 1:"bottle_33cl", 2:"bottle_50cl", 3:"bottle_100cl", 4:"bottle_150cl", 5:"bottle_200cl", 6:"can", 7:"reject" } names=[] for result in results: probs = result.probs.top1 names.append(classes[probs]) return names def create_solutions(image_urls, names): solutions = [] for image_url, prediction in zip(image_urls, names): prediction_list=[] prediction_list.append(prediction) obj = {"url": image_url, "answer": prediction_list} solutions.append(obj) return solutions # def send_results_to_api(data, result_url): # # Example function to send results to an API # headers = {"Content-Type": "application/json"} # response = requests.post(result_url, json=data, headers=headers) # if response.status_code == 200: # return response.json() # Return any response from the API if needed # else: # return {"error": f"Failed to send results to API: {response.status_code}"} def process_images(params): try: params = json.loads(params) except json.JSONDecodeError as e: logging.error(f"Invalid JSON input: {e.msg} at line {e.lineno} column {e.colno}") return {"error": f"Invalid JSON input: {e.msg} at line {e.lineno} column {e.colno}"} image_urls = params.get("urls", []) # api = params.get("api", "") # job_id = params.get("job_id", "") if not image_urls: logging.error("Missing required parameters: 'urls'") return {"error": "Missing required parameters: 'urls'"} try: images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls] # images from URLs except Exception as e: logging.error(f"Error loading images: {e}") return {"error": f"Error loading images: {str(e)}"} names = detect_objects(images) # Perform object detection solutions = create_solutions(image_urls, names) # Create solutions with image URLs and bounding boxes # result_url = f"{api}/{job_id}" # send_results_to_api(solutions, result_url) return json.dumps({"solutions": solutions}) inputt = gr.Textbox(label="Parameters (JSON format) Eg. {'img_url':['a.jpg','b.jpg']}") outputs = gr.JSON() application = gr.Interface(fn=process_images, inputs=inputt, outputs=outputs, title="Bottles Cans Classification with API Integration") application.launch()