import os import streamlit as st from langchain.chains import RetrievalQA from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.callbacks.base import BaseCallbackHandler from langchain.vectorstores.neo4j_vector import Neo4jVector from streamlit.logger import get_logger from chains import ( load_embedding_model, load_llm, ) url = os.getenv("NEO4J_URI") username = os.getenv("NEO4J_USERNAME") password = os.getenv("NEO4J_PASSWORD") ollama_base_url = os.getenv("OLLAMA_BASE_URL") embedding_model_name = os.getenv("EMBEDDING_MODEL", "SentenceTransformer" ) llm_name = os.getenv("LLM", "llama2") url = os.getenv("NEO4J_URI") # Check if the required environment variables are set if not all([url, username, password, ollama_base_url]): st.write("The application requires some information before running.") with st.form("connection_form"): url = st.text_input("Enter NEO4J_URI",) username = st.text_input("Enter NEO4J_USERNAME") password = st.text_input("Enter NEO4J_PASSWORD", type="password") ollama_base_url = st.text_input("Enter OLLAMA_BASE_URL") st.markdown("Only enter the OPENAI_APIKEY to use OpenAI instead of Ollama. Leave blank to use Ollama.") openai_apikey = st.text_input("Enter OPENAI_API_KEY", type="password") submit_button = st.form_submit_button("Submit") if submit_button: if not all([url, username, password, ]): st.write("Enter the Neo4j information.") if not (ollama_base_url or openai_apikey): st.write("Enter the Ollama URL or OpenAI API Key.") if openai_apikey: llm_name = "gpt-3.5" os.environ['OPENAI_API_KEY'] = openai_apikey os.environ["NEO4J_URL"] = url logger = get_logger(__name__) embeddings, dimension = load_embedding_model( embedding_model_name, config={"ollama_base_url": ollama_base_url}, logger=logger ) class StreamHandler(BaseCallbackHandler): def __init__(self, container, initial_text=""): self.container = container self.text = initial_text def on_llm_new_token(self, token: str, **kwargs) -> None: self.text += token self.container.markdown(self.text) llm = load_llm(llm_name, logger=logger, config={"ollama_base_url": ollama_base_url}) def main(): st.header("📄Chat with your pdf file") # upload a your pdf file pdf = st.file_uploader("Upload your PDF", type="pdf") if pdf is not None: pdf_reader = PdfReader(pdf) text = "" for page in pdf_reader.pages: text += page.extract_text() # langchain_textspliter text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text=text) # Store the chunks part in db (vector) vectorstore = Neo4jVector.from_texts( chunks, url=url, username=username, password=password, embedding=embeddings, index_name="pdf_bot", node_label="PdfBotChunk", pre_delete_collection=True, # Delete existing PDF data ) qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vectorstore.as_retriever() ) # Accept user questions/query query = st.text_input("Ask questions about your PDF file") if query: stream_handler = StreamHandler(st.empty()) qa.run(query, callbacks=[stream_handler]) if __name__ == "__main__": main()