Spaces:
Sleeping
Sleeping
import wandb | |
import yaml | |
from transformers import Trainer, TrainingArguments | |
from utils.monitor import measure_resources | |
from data.datasets import load_and_tokenize_data | |
from models.lora_model import get_lora_model | |
# Charger la configuration | |
with open('config/config.yaml', 'r') as f: | |
config = yaml.safe_load(f) | |
# Initialiser wandb | |
wandb.init(project=config['wandb']['project'], entity=config['wandb']['entity']) | |
# Charger les donn�es | |
train_dataset, test_dataset = load_and_tokenize_data(config) | |
# Charger le mod�le | |
model = get_lora_model(config) | |
# D�finir les arguments de formation | |
training_args = TrainingArguments( | |
output_dir='./results', | |
num_train_epochs=config['training']['num_epochs'], | |
per_device_train_batch_size=config['training']['batch_size'], | |
per_device_eval_batch_size=config['training']['batch_size'], | |
evaluation_strategy='epoch', | |
save_steps=10_000, | |
save_total_limit=2, | |
logging_dir='./logs', | |
logging_steps=10, | |
) | |
# Cr�er le Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=test_dataset, | |
) | |
# Mesurer les ressources et entra�ner le mod�le | |
measure_resources(trainer, "LoRA") | |