Spaces:
Sleeping
Sleeping
rom langchain.chains import RAGChain | |
from langchain.llms import HuggingFace | |
from langchain.retrievers import BM25Retriever | |
from langchain.prompts import PromptTemplate | |
import yaml | |
# Charger la configuration | |
with open('config/config.yaml', 'r') as f: | |
config = yaml.safe_load(f) | |
# Configuration du mod�le | |
llm = HuggingFace("distilbert-base-uncased") | |
# Configuration du retriever | |
retriever = BM25Retriever.from_documents(["This is a great movie.", "I love this film."]) | |
# Cr�ation du template de prompt | |
template = PromptTemplate("Classify the sentiment of the following text: {text}") | |
# Cr�ation de la cha�ne RAG | |
rag_chain = RAGChain(llm=llm, retriever=retriever, prompt_template=template) | |
# Exemples de textes � classifier | |
texts = ["This is a fantastic movie.", "I enjoy this movie."] | |
# Utiliser RAG pour obtenir des classifications avec contexte | |
for text in texts: | |
result = rag_chain.run({"text": text}) | |
print(f"Text: {text}, Result: {result}") | |