|
import gradio as gr |
|
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer |
|
import torch |
|
from PIL import Image |
|
|
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
|
|
max_length = 16 |
|
num_beams = 4 |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
|
|
def predict_step(image): |
|
|
|
i_image = Image.fromarray(image) |
|
if i_image.mode != "RGB": |
|
i_image = i_image.convert(mode="RGB") |
|
|
|
|
|
pixel_values = feature_extractor(images=[i_image], return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(device) |
|
|
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs) |
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
|
|
return preds[0] |
|
|
|
|
|
interface = gr.Interface( |
|
fn=predict_step, |
|
inputs=gr.Image(type="numpy"), |
|
outputs="text", |
|
title="Image-to-Text Conversion", |
|
description="Upload an image, and this model will generate a textual description of the image." |
|
) |
|
|
|
|
|
interface.launch() |
|
|