jarif's picture
Update app.py
da9f201 verified
import gradio as gr
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
# Load model and tokenizer
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define generation parameters
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image):
# Convert image from numpy array to PIL image
i_image = Image.fromarray(image)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
# Prepare image for the model
pixel_values = feature_extractor(images=[i_image], return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# Generate prediction
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds[0]
# Define Gradio interface
interface = gr.Interface(
fn=predict_step,
inputs=gr.Image(type="numpy"), # Updated to use gr.Image
outputs="text",
title="Image-to-Text Conversion",
description="Upload an image, and this model will generate a textual description of the image."
)
# Launch the interface
interface.launch()