Summarization / app.py
jarif's picture
Update app.py
fa2b247 verified
raw
history blame
958 Bytes
import torch
from fastai.text.all import *
from blurr.data.all import *
from blurr.modeling.all import *
from transformers import BartForConditionalGeneration
# Load the pre-trained model and tokenizer (adjust for Bart if needed)
pretrained_model_name = "facebook/bart-large-cnn" # Or "facebook/bart-base"
hf_tokenizer = BartTokenizer.from_pretrained(pretrained_model_name)
def summarize(article):
# Define your data transformation pipeline here, if applicable
# ...
# Load the exported model
learn = load_learner('article_highlights.pkl')
# Generate the summary
summary = learn.blurr_generate(article)[0]
return summary
# Create the Gradio interface
iface = gr.Interface(
fn=summarize,
inputs="text",
outputs="text",
title="Article Summarizer (Part 3)",
description="Enter an article and get a summary.",
examples=[["This is an example article..."]]
)
# Launch the Gradio interface
iface.launch()