Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,22 @@
|
|
1 |
-
import
|
2 |
from fastai.text.all import *
|
3 |
from blurr.text.data.all import *
|
4 |
-
from blurr.text.modeling.all import *
|
5 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
-
from transformers import BartForConditionalGeneration
|
7 |
|
8 |
-
# Load the pre-trained model and tokenizer
|
9 |
-
pretrained_model_name = "facebook/bart-large-cnn"
|
10 |
hf_tokenizer = T5Tokenizer.from_pretrained(pretrained_model_name)
|
11 |
-
learn = load_learner('article_highlights.pkl')
|
12 |
|
13 |
def summarize(article):
|
14 |
-
#
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
# Generate the summary
|
18 |
-
summary = learn.predict(
|
19 |
|
20 |
return summary
|
21 |
|
|
|
1 |
+
import torch
|
2 |
from fastai.text.all import *
|
3 |
from blurr.text.data.all import *
|
4 |
+
from blurr.text.modeling.all import * # Import only needed functions
|
5 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration # Use T5 specifically
|
|
|
6 |
|
7 |
+
# Load the pre-trained model and tokenizer (adjust for Bart if needed)
|
8 |
+
pretrained_model_name = "facebook/bart-large-cnn" # Or "facebook/bart-base"
|
9 |
hf_tokenizer = T5Tokenizer.from_pretrained(pretrained_model_name)
|
|
|
10 |
|
11 |
def summarize(article):
|
12 |
+
# Define your data transformation pipeline here, if applicable
|
13 |
+
# ...
|
14 |
+
|
15 |
+
# Load the exported model
|
16 |
+
learn = load_learner('article_highlights.pkl')
|
17 |
|
18 |
# Generate the summary
|
19 |
+
summary = learn.predict(article)[0]['highlights']
|
20 |
|
21 |
return summary
|
22 |
|