import torch from fastai.text.all import * from blurr.text.data.all import * from blurr.text.modeling.all import * from transformers import BartForConditionalGeneration # Load the pre-trained model and tokenizer (adjust for Bart if needed) pretrained_model_name = "facebook/bart-large-cnn" # Or "facebook/bart-base" hf_tokenizer = BartTokenizer.from_pretrained(pretrained_model_name) def summarize(article): # Define your data transformation pipeline here, if applicable # ... # Load the exported model learn = load_learner('article_highlights.pkl') # Generate the summary summary = learn.blurr_generate(article)[0] return summary # Create the Gradio interface iface = gr.Interface( fn=summarize, inputs="text", outputs="text", title="Article Summarizer (Part 3)", description="Enter an article and get a summary.", examples=[["This is an example article..."]] ) # Launch the Gradio interface iface.launch()