File size: 9,502 Bytes
81eeead |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import requests
import pandas as pd
import datetime
import pytz
import numpy as np
import math
import ta
class StockDataFetcher:
def __init__(self):
self.base_url = "https://groww.in/v1/api/charting_service/v3/chart/exchange/NSE/segment/CASH/"
self.base_fno_url = "https://groww.in/v1/api/stocks_fo_data/v3/charting_service/chart/exchange/NSE/segment/FNO/"
self.latest_stock_price = "https://groww.in/v1/api/stocks_data/v1/tr_live_prices/exchange/NSE/segment/CASH/"
self.latest_option_price = "https://groww.in/v1/api/stocks_fo_data/v1/tr_live_prices/exchange/NSE/segment/FNO/"
self.option_chain = "https://groww.in/v1/api/option_chain_service/v1/option_chain/derivatives/"
self.search_url = "https://groww.in/v1/api/search/v1/entity"
self.news_url = "https://groww.in/v1/api/stocks_company_master/v1/company_news/groww_contract_id/"
self.all_stocks_url = "https://groww.in/v1/api/stocks_data/v1/all_stocks"
self.indian_timezone = pytz.timezone('Asia/Kolkata')
self.utc_timezone = pytz.timezone('UTC')
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0'
}
def _get_time_range(self, days=7):
current_time = datetime.datetime.now(self.indian_timezone)
start_time = current_time - datetime.timedelta(days=days)
start_time_utc = start_time.astimezone(pytz.utc)
current_time_utc = current_time.astimezone(pytz.utc)
start_time_millis = int(start_time_utc.timestamp() * 1000)
end_time_millis = int(current_time_utc.timestamp() * 1000)
return start_time_millis, end_time_millis
def fetch_stock_data(self, symbol, interval=15, days=7):
start_time, end_time = self._get_time_range(days)
params = {
'endTimeInMillis': end_time,
'intervalInMinutes': interval,
'startTimeInMillis': start_time,
}
try:
print("Downloading data of", symbol.upper())
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
response = requests.get(self.base_fno_url + symbol.upper(), params=params, headers=self.headers)
else:
response = requests.get(self.base_url + symbol.upper(), params=params, headers=self.headers)
response.raise_for_status()
data = response.json()
columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
for row in data['candles']:
row[0] = datetime.datetime.utcfromtimestamp(row[0])
df = pd.DataFrame(data['candles'], columns=columns)
df['Date'] = pd.to_datetime(df['Date'])
df['Date'] = df['Date'].dt.tz_localize(self.utc_timezone).dt.tz_convert(self.indian_timezone)
return df
except requests.exceptions.RequestException as e:
print(f"Error during API request: {e}")
return None
def fetch_latest_price(self, symbol):
try:
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
response = requests.get(self.latest_option_price + symbol.upper() + "/latest", headers=self.headers)
else:
response = requests.get(self.latest_stock_price + symbol.upper() + "/latest", headers=self.headers)
if response.status_code == 200:
data = response.json()
latest_price = data.get('ltp')
print(symbol, 'Price: ', latest_price)
return latest_price
else:
print(f"Failed to fetch data. Status code: {response.status_code}")
return None
except Exception as e:
print(f"An error occurred: {e}")
return None
def fetch_option_chain(self, symbol):
response = requests.get(self.option_chain + symbol, headers=self.headers)
data = response.json()['optionChain']['optionChains']
ltp = response.json()['livePrice']['value']
chain = []
for i in range(len(data)):
chain.append({"Symbol_CE": data[i]["callOption"]['growwContractId'], "OI_CALL": data[i]["callOption"]['openInterest'] , "CALL": data[i]["callOption"]['ltp'], "strikePrice": data[i]['strikePrice']/100, "PUT": data[i]["putOption"]['ltp'], "OI_PUT": data[i]["putOption"]['openInterest'], "Symbol_PE": data[i]["putOption"]['growwContractId']}
)
chain = pd.DataFrame(chain)
index = chain[(chain['strikePrice'] >= ltp)].head(1).index[0]
print(response.json()['livePrice'])
chain = chain[index-6:index+7].reset_index(drop=True)
optin_exp = chain['Symbol_CE'][0][:-7]
return chain, optin_exp
def search_entity(self, symbol, entity=None, page=0, size=1, app=False):
params = {
'app': app,
'entity_type': entity,
'page': page,
'q': f"{symbol}",
'size': size
}
try:
response = requests.get(self.search_url, params=params, headers=self.headers)
response.raise_for_status()
data = response.json()
entity = data['content'][0]
return {"ID": entity['id'], "title": entity['title'], "NSE_Symbol": entity['nse_scrip_code'], "contract_id" : entity["groww_contract_id"]}
except requests.exceptions.RequestException as e:
print(f"Error during API request: {e}")
return None
def fetch_stock_news(self, symbol, page=1, size=1):
params = {
"page" : page,
"size" : size
}
try:
symbol_id = self.search_entity(symbol.upper())['contract_id']
response = requests.get(self.news_url + symbol_id, headers=self.headers, params=params).json()['results']
print(response)
news = []
for i in range(len(response)):
Title = response[i]['title']
Summary = response[i]['summary']
Url = response[i]['url']
Date = response[i]['pubDate']
Source = response[i]['source']
CompanyName = response[i]['companies'][0]['companyName']
ScripCode = response[i]['companies'][0]['nseScripCode']
BlogUrl = response[i]['companies'][0]['blogUrl']
Topics = response[i]['topics'][0]
news.append({
'title': Title,
'summary': Summary,
'url': Url,
'pubDate': Date,
'source': Source,
'companyName': CompanyName,
'symbol': ScripCode,
'blogUrl': BlogUrl,
'topics': Topics
})
news_table = pd.DataFrame(news)
return news_table
except:
print("Something went wrong")
return None
def fetch_all_stock(self):
try:
params = {
'listFilters': {'INDUSTRY': [], 'INDEX': []},
'INDEX': ["BSE 100", "Nifty 100", "Nifty Bank", "Nifty Next 50", "Nifty Midcap 100", "SENSEX", "Nifty 50"],
'INDUSTRY': [],
'objFilters': {'CLOSE_PRICE': {'max': 100000, 'min': 0}, 'MARKET_CAP': {'min': 0, 'max': 2000000000000000}},
'CLOSE_PRICE': {'max': 100000, 'min': 0},
'MARKET_CAP': {'min': 0, 'max': 2000000000000000},
'size': "1000",
'sortBy': "NA",
'sortType': "ASC"
}
all_data = []
page = 0
while True:
params['page'] = str(page)
response = requests.post(self.all_stocks_url, headers=self.headers, json=params)
data = response.json()
records = data.get('records', [])
if not records:
break
all_data.extend(records)
page += 1
df = pd.DataFrame(all_data)
live_price_df = pd.json_normalize(df['livePriceDto'])
df = pd.concat([df, live_price_df], axis=1)
df = df.drop(columns=['livePriceDto'])
return df
except:
return None
def realtime_signal(self, symbol, intervals=15, days=10):
rounding_value=None
if symbol.upper() == "NIFTY":
index_symbol = "NIFTY"
rounding_value = 50
elif symbol.upper() == "NIFTY-BANK":
index_symbol = "BANKNIFTY"
rounding_value = 100
else:
pass
stock_data = self.fetch_stock_data(index_symbol, intervals, days)
chain, exp = self.fetch_option_chain(symbol.upper())
stock_data['RSI'] = ta.momentum.rsi(stock_data['Close'], window=14)
stock_data = stock_data.drop(columns=['Volume'])
stock_data['Prev_RSI'] = stock_data['RSI'].shift(1)
stock_data['Signal'] = 0
call_condition = (stock_data['RSI'] > 60) & (stock_data['Prev_RSI'] < 60)
put_condition = (stock_data['RSI'] < 40) & (stock_data['Prev_RSI'] > 40)
stock_data.loc[call_condition, 'Signal'] = 1
stock_data.loc[put_condition, 'Signal'] = 2
stock_data = stock_data.dropna().reset_index(drop=True)
def floor_to_nearest(value, nearest):
return math.ceil(value / nearest) * nearest
stock_data['Option'] = stock_data['Close'].apply(lambda x: floor_to_nearest(x, rounding_value))
stock_data['direction'] = np.where(stock_data['Signal'] == 2, "PE", np.where(stock_data['Signal'] == 1, "CE", ""))
stock_data['symbol'] = exp + stock_data['Option'].astype(str) + stock_data['direction']
return stock_data |