Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,290 Bytes
c0490dd da90319 c0490dd e5efe2c c0490dd e5efe2c c0490dd e5efe2c c0490dd bfd8827 c0490dd bc47113 c0490dd bfd8827 6e8bc8b bfd8827 c0490dd bc47113 c0490dd bfd8827 c0490dd bfd8827 c0490dd 60568a9 c0490dd bc47113 c0490dd bc47113 bfd8827 c0490dd 6e8bc8b c0490dd bc47113 c0490dd bfd8827 6e8bc8b bfd8827 c0490dd bc47113 c0490dd d94db66 c0490dd 4f37994 d94db66 c0490dd bc47113 c0490dd 6ac2fca c0490dd ff771b6 b132437 bf202b3 ff771b6 b132437 bf202b3 c0490dd ff771b6 c0490dd b132437 bf202b3 b132437 bf202b3 b132437 c0490dd bc47113 c0490dd b3f688a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
else:
power_device = "CPU"
device = "cpu"
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token, # type a new token-id.
)
# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
)
pipe.to(device)
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024
def process_input(input_image, upscale_factor, **kwargs):
w, h = input_image.size
w_original, h_original = w, h
aspect_ratio = w / h
was_resized = False
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
)
gr.Info(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
)
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
# resize to multiple of 8
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), w_original, h_original, was_resized
@spaces.GPU(duration=75)
def infer(
seed,
randomize_seed,
input_image,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
true_input_image = input_image
input_image, w_original, h_original, was_resized = process_input(
input_image, upscale_factor
)
# rescale with upscale factor
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
generator = torch.Generator().manual_seed(seed)
gr.Info("Upscaling image...")
image = pipe(
prompt="",
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=3.5,
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
if was_resized:
gr.Info(
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
)
# resize to target desired size
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
image.save("output.jpg")
# convert to numpy
return [true_input_image, image, seed]
with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# β‘ Flux.1-dev Upscaler ControlNet β‘
This is an interactive demo of [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler) taking as input a low resolution image to generate a high resolution image.
Currently running on {power_device}.
*Note*: Even though the model can hamdle higher resolution images, due to GPU memory constraints, this demo was limited to a generated output not exceeding a pixel budget of 1024x1024. If the the requested size exceeds that limited, the input will be first resized keeping the aspect ratio such that the output of the controlNet model does not exceed the allocated pixel budget. The output is then resized to the targeted shape using a simple resizing. This may explain some artifacts for high resolution input. To adress this, run the demo locally or consider implementing a tiling strategy. Happy upscaling! π
"""
)
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Row():
with gr.Column(scale=4):
input_im = gr.Image(label="Input Image", type="pil")
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=8,
maximum=50,
step=1,
value=28,
)
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=1,
maximum=4,
step=1,
value=4,
)
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale",
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.6,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
result = ImageSlider(label="Input / Output", type="pil", interactive=True)
examples = gr.Examples(
examples=[
[42, False, "examples/image_1.jpg", 28, 4, 0.6],
#[42, False, "examples/image_2.jpg", 28, 4, 0.6],
[42, False, "examples/image_3.jpg", 28, 4, 0.6],
[42, False, "examples/image_4.jpg", 28, 4, 0.6],
#[42, False, "examples/image_5.jpg", 28, 4, 0.6],
#[42, False, "examples/image_6.jpg", 28, 4, 0.6],
],
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
fn=infer,
outputs=result,
cache_examples=True,
)
examples = gr.Examples(
examples=[
#[42, False, "examples/image_1.jpg", 28, 4, 0.6],
[42, False, "examples/image_2.jpg", 28, 4, 0.6],
#[42, False, "examples/image_3.jpg", 28, 4, 0.6],
#[42, False, "examples/image_4.jpg", 28, 4, 0.6],
[42, False, "examples/image_5.jpg", 28, 4, 0.6],
[42, False, "examples/image_6.jpg", 28, 4, 0.6],
[42, False, "examples/image_7.jpg", 28, 4, 0.6],
],
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
)
gr.Markdown("**Disclaimer:**")
gr.Markdown(
"This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
)
gr.on(
[run_button.click],
fn=infer,
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
outputs=result,
show_api=False,
# show_progress="minimal",
)
demo.queue().launch(share=False, show_api=False)
|