Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import PixArtAlphaPipeline, Transformer2DModel, LCMScheduler | |
import torch | |
from peft import PeftModel | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
transformer = Transformer2DModel.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", | |
subfolder="transformer", | |
torch_dtype=torch.float16 | |
) | |
transformer = PeftModel.from_pretrained( | |
transformer, | |
"jasperai/flash-pixart" | |
) | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = PixArtAlphaPipeline.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", | |
transformer=transformer, | |
torch_dtype=torch.float16 | |
) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = PixArtAlphaPipeline.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", | |
transformer=transformer, | |
torch_dtype=torch.float16 | |
) | |
pipe = pipe.to(device) | |
pipe.scheduler = LCMScheduler.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", | |
subfolder="scheduler", | |
timestep_spacing="trailing", | |
) | |
pipe.load_lora_weights(adapter_id) | |
pipe.fuse_lora() | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
NUM_INFERENCE_STEPS = 4 | |
def infer(prompt, seed, randomize_seed, num_inference_steps): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
guidance_scale = 0, | |
num_inference_steps = num_inference_steps, | |
generator = generator | |
).images[0] | |
return image | |
examples = [ | |
"The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.", | |
"A raccoon reading a book in a lush forest.", | |
"A serene landscape showcases a winding road alongside a vast, turquoise lake, flanked by majestic snow-capped mountains under a partly cloudy sky.", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 512px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# ⚡ FlashDiffusion: FlashPixart ⚡ | |
This is an interactive demo of [Flash Diffusion](https://huggingface.co/jasperai/flash-pixart), a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.* | |
This model is a **66.5M** LoRA distilled version of [Pixart-α](https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS) model that is able to generate 1024x1024 images in **4 steps**. | |
Currently running on {power_device}. | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [prompt, seed, randomize_seed, NUM_INFERENCE_STEPS], | |
outputs = [result] | |
) | |
demo.queue().launch() |