Shaamallow commited on
Commit
183c72e
·
1 Parent(s): 09f3d43
Files changed (2) hide show
  1. README.md +1 -1
  2. app.py +9 -13
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Noisy-Style
3
  emoji: 🎨
4
  colorFrom: blue
5
  colorTo: pink
 
1
  ---
2
+ title: Inversion-InstantStyle
3
  emoji: 🎨
4
  colorFrom: blue
5
  colorTo: pink
app.py CHANGED
@@ -1,6 +1,5 @@
1
  import os
2
  import random
3
- from typing import Optional
4
 
5
  import gradio as gr
6
  import numpy as np
@@ -9,16 +8,16 @@ import spaces
9
  import torch
10
  from diffusers import (AutoencoderKL, DDIMInverseScheduler, DDIMScheduler,
11
  StableDiffusionXLPipeline)
12
- from torchvision.transforms import ToTensor
13
 
14
  # pyright: reportPrivateImportUsage=false
15
 
16
 
17
  DESCRIPTION = f"""
18
- # 🎨 Noisy-Style 🎨
19
  This is an interactive demo of noisy DDIM inversion capabilities on top of Instant-Style styling method
20
 
21
- This method proposed in [Controllability of diffusion models]() *by Eyal Benaroche, Clément Chadebec, Onur Tasar, and Benjamin Aubin* from Jasper Research in the context of Eyal's internship with Ecole Polytechnique.
22
 
23
  A style benchmark : [style-bench](https://gojasper.github.io/style-bench) was also provided to facilitate evaluation of diffusion models for styling purposes.
24
  """
@@ -54,7 +53,7 @@ if gr.NO_RELOAD:
54
  pipe.load_ip_adapter(
55
  "h94/IP-Adapter",
56
  subfolder="sdxl_models",
57
- weight_name="ip-adapter_sdxl.safetensors"
58
  )
59
  pipe.to(device)
60
 
@@ -88,7 +87,7 @@ def img_to_latents(x: torch.Tensor, vae: AutoencoderKL):
88
  return latents
89
 
90
 
91
- def invert_image(model, image: np.ndarray, n_steps: int, width:int, height:int):
92
 
93
  model.scheduler = invert_scheduler
94
 
@@ -128,7 +127,7 @@ def generate(
128
  height: int = 1024,
129
  guidance_scale_base: float = 5.0,
130
  num_inference_steps_base: int = 25,
131
- style_image_value = None,
132
  noise_scale: float = 1.5,
133
  ) -> PIL.Image.Image:
134
  torch.manual_seed(seed)
@@ -146,18 +145,15 @@ def generate(
146
  # Invert the image and get the latent
147
  if style_image_value is not None:
148
  latent = invert_image(pipe, style_image_value, 30, width, height)
149
- print("Image was inverted")
150
- print(latent)
151
 
152
  latent = latent + noise_scale * noise
153
- latent = latent / torch.sqrt(torch.tensor(1 + noise_scale**2).to(device, dtype=torch.float16))
 
 
154
 
155
  else:
156
  latent = noise
157
 
158
- print("Noise added")
159
- print(latent)
160
-
161
  scale = {
162
  "up": {"block_0": [0.0, 1.0, 0.0]},
163
  }
 
1
  import os
2
  import random
 
3
 
4
  import gradio as gr
5
  import numpy as np
 
8
  import torch
9
  from diffusers import (AutoencoderKL, DDIMInverseScheduler, DDIMScheduler,
10
  StableDiffusionXLPipeline)
11
+ from torchvision.transforms import ToTensor
12
 
13
  # pyright: reportPrivateImportUsage=false
14
 
15
 
16
  DESCRIPTION = f"""
17
+ # 🎨 Inversion-InstantStyle 🎨
18
  This is an interactive demo of noisy DDIM inversion capabilities on top of Instant-Style styling method
19
 
20
+ This method is proposed by *Eyal Benaroche, Clément Chadebec, Onur Tasar, and Benjamin Aubin* from Jasper Research in the context of Eyal's internship with Ecole Polytechnique.
21
 
22
  A style benchmark : [style-bench](https://gojasper.github.io/style-bench) was also provided to facilitate evaluation of diffusion models for styling purposes.
23
  """
 
53
  pipe.load_ip_adapter(
54
  "h94/IP-Adapter",
55
  subfolder="sdxl_models",
56
+ weight_name="ip-adapter_sdxl.safetensors",
57
  )
58
  pipe.to(device)
59
 
 
87
  return latents
88
 
89
 
90
+ def invert_image(model, image: np.ndarray, n_steps: int, width: int, height: int):
91
 
92
  model.scheduler = invert_scheduler
93
 
 
127
  height: int = 1024,
128
  guidance_scale_base: float = 5.0,
129
  num_inference_steps_base: int = 25,
130
+ style_image_value=None,
131
  noise_scale: float = 1.5,
132
  ) -> PIL.Image.Image:
133
  torch.manual_seed(seed)
 
145
  # Invert the image and get the latent
146
  if style_image_value is not None:
147
  latent = invert_image(pipe, style_image_value, 30, width, height)
 
 
148
 
149
  latent = latent + noise_scale * noise
150
+ latent = latent / torch.sqrt(
151
+ torch.tensor(1 + noise_scale**2).to(device, dtype=torch.float16)
152
+ )
153
 
154
  else:
155
  latent = noise
156
 
 
 
 
157
  scale = {
158
  "up": {"block_0": [0.0, 1.0, 0.0]},
159
  }