whisperdemo / app.py
jawadrashid's picture
Update app.py
77d4fb9 verified
import gradio as gr
from transformers import pipeline
import numpy as np
demo = gr.Blocks()
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
def transcribe_speech(filepath):
if filepath is None:
gr.Warning("No audio found, please retry.")
return ""
output = transcriber (filepath)
return output["text"]
def transcribe_long_form(filepath):
if filepath is None:
gr.Warning("No audio found, please retry.")
return ""
output = transcriber(
filepath,
max_new_tokens=256,
chunk_length_s=30,
batch_size=8,
)
return output["text"]
mic_transcribe = gr.Interface(
fn=transcribe_long_form,
inputs=gr.Audio(sources="microphone",
type="filepath"),
outputs=gr.Textbox(label="Transcription",
lines=3),
allow_flagging="never")
file_transcribe = gr.Interface(
fn=transcribe_long_form,
inputs=gr.Audio(sources="upload",
type="filepath"),
outputs=gr.Textbox(label="Transcription",
lines=3),
allow_flagging="never",
)
with demo:
gr.TabbedInterface(
[mic_transcribe,
file_transcribe],
["Transcribe Microphone",
"Transcribe Audio File"],
)
# demo.launch(share=True,
# server_port=int(os.environ['PORT1']))
demo.launch()