Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""Translation_APP.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1EVFldoVPoPgAsak48hRkL_D_jhCo76r_ | |
""" | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from gtts import gTTS | |
import torch | |
import gradio as gr | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
language_model_name = "Qwen/Qwen2-1.5B-Instruct" | |
language_model = AutoModelForCausalLM.from_pretrained( | |
language_model_name, | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(language_model_name) | |
def process_input(input_text, action): | |
if action == "Translate to English": | |
prompt = f"Please translate the following text into English: {input_text}" | |
lang = "en" | |
elif action == "Translate to Chinese": | |
prompt = f"Please translate the following text into Chinese: {input_text}" | |
lang = "zh-cn" | |
elif action == "Translate to Japanese": | |
prompt = f"Please translate the following text into Japanese: {input_text}" | |
lang = "ja" | |
else: | |
prompt = input_text | |
lang = "en" | |
messages = [ | |
{"role": "system", "content": "You are a helpful AI assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
# Encode input with attention mask | |
model_inputs = tokenizer([text], return_tensors="pt", padding=True, truncation=True).to(device) | |
attention_mask = model_inputs["attention_mask"] | |
generated_ids = language_model.generate( | |
input_ids=model_inputs.input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
output_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return output_text, lang | |
def text_to_speech(text, lang): | |
tts = gTTS(text=text, lang=lang) | |
filename = "output_audio.mp3" | |
tts.save(filename) | |
return filename | |
def handle_interaction(input_text, action): | |
output_text, lang = process_input(input_text, action) | |
audio_filename = text_to_speech(output_text, lang) | |
return output_text, audio_filename | |
action_options = ["Translate to English", "Translate to Chinese", "Translate to Japanese", "Chat"] | |
iface = gr.Interface( | |
fn=handle_interaction, | |
inputs=[ | |
gr.Textbox(label="Input Text"), | |
gr.Dropdown(action_options, label="Select Action") | |
], | |
outputs=[ | |
gr.Textbox(label="Output Text"), | |
gr.Audio(label="Output Audio") | |
], | |
title="Translation and Chat App using AI", | |
description="Translate input text or chat based on the selected action.", | |
theme="gradio/soft" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |