# -*- coding: utf-8 -*- """Translation_APP.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1EVFldoVPoPgAsak48hRkL_D_jhCo76r_ """ from transformers import AutoModelForCausalLM, AutoTokenizer from gtts import gTTS import torch import gradio as gr device = "cuda" if torch.cuda.is_available() else "cpu" language_model_name = "Qwen/Qwen2-1.5B-Instruct" language_model = AutoModelForCausalLM.from_pretrained( language_model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(language_model_name) def process_input(input_text, action): if action == "Translate to English": prompt = f"Please translate the following text into English: {input_text}" lang = "en" elif action == "Translate to Chinese": prompt = f"Please translate the following text into Chinese: {input_text}" lang = "zh-cn" elif action == "Translate to Japanese": prompt = f"Please translate the following text into Japanese: {input_text}" lang = "ja" else: prompt = input_text lang = "en" messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Encode input with attention mask model_inputs = tokenizer([text], return_tensors="pt", padding=True, truncation=True).to(device) attention_mask = model_inputs["attention_mask"] generated_ids = language_model.generate( input_ids=model_inputs.input_ids, attention_mask=attention_mask, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] output_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return output_text, lang def text_to_speech(text, lang): tts = gTTS(text=text, lang=lang) filename = "output_audio.mp3" tts.save(filename) return filename def handle_interaction(input_text, action): output_text, lang = process_input(input_text, action) audio_filename = text_to_speech(output_text, lang) return output_text, audio_filename action_options = ["Translate to English", "Translate to Chinese", "Translate to Japanese", "Chat"] iface = gr.Interface( fn=handle_interaction, inputs=[ gr.Textbox(label="Input Text"), gr.Dropdown(action_options, label="Select Action") ], outputs=[ gr.Textbox(label="Output Text"), gr.Audio(label="Output Audio") ], title="Translation and Chat App using AI", description="Translate input text or chat based on the selected action.", theme="gradio/soft" ) if __name__ == "__main__": iface.launch(share=True)