Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
import tensorflow as tf | |
from PIL import Image, ImageDraw, ImageFont | |
# Function to load the modified model without recompiling | |
def load_modified_model(model_path): | |
return tf.keras.models.load_model(model_path) | |
# Load the trained model | |
print("Loading model...") | |
model = load_modified_model('denseNet121.h5') | |
print("Model loaded successfully.") | |
# Function to classify food vs. non-food image using the loaded model | |
def classify_food_vs_nonfood(image): | |
try: | |
# Preprocess image | |
image_size = (224, 224) | |
image = image.resize(image_size) | |
image_np = np.array(image) / 255.0 | |
image_np_expanded = np.expand_dims(image_np, axis=0) | |
# Make prediction | |
prediction = model.predict(image_np_expanded) | |
final_prediction = np.argmax(prediction[0]) | |
# Display result | |
results = {0: 'Food', 1: 'Non Food'} | |
label = results[final_prediction] | |
# Create a draw object | |
draw = ImageDraw.Draw(image) | |
# Specify font and size | |
font = ImageFont.load_default() | |
# Get text size | |
text_font = ImageFont.truetype("Hack-Regular.ttf", 24) | |
text_bbox = draw.textbbox((0, 0), label, font=text_font) | |
text_size = (text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]) | |
# Calculate text position | |
text_position = ((image_size[0] - text_size[0]) // 2, 10) | |
# Add text to the image | |
draw.text(text_position, label, fill=(255, 0, 0), font=text_font) | |
# Return modified image | |
return image | |
except Exception as e: | |
print("Error processing image:", e) | |
# Define inputs for Gradio interface | |
image_input = gr.inputs.Image(shape=(224, 224), type="pil") | |
# Define example images as file paths | |
ex_image_paths = ['image_1.jpeg', 'image_2.jpeg', 'image_3.jpeg', 'image_4.jpg', 'image_5.jpg'] | |
# Launch Gradio interface with example images | |
food_vs_nonfood_interface = gr.Interface(classify_food_vs_nonfood, | |
inputs=image_input, | |
outputs="image", | |
title="Food vs NonFood Classifier", | |
description="Upload an image to classify whether it's food or non-food.", | |
examples=ex_image_paths) | |
food_vs_nonfood_interface.launch(inline=False) | |