Spaces:
Runtime error
Runtime error
jaydemirandilla
commited on
Commit
•
79c2041
1
Parent(s):
ea251f4
Upload 9 files
Browse files- Hack-Regular.ttf +0 -0
- app.py +67 -0
- food_model_1.h5 +3 -0
- image_1.jpeg +0 -0
- image_2.jpeg +0 -0
- image_3.jpeg +0 -0
- image_4.jpg +0 -0
- image_5.jpg +0 -0
- requirements.txt +0 -0
Hack-Regular.ttf
ADDED
Binary file (383 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import tensorflow as tf
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
|
6 |
+
# Function to load the modified model without recompiling
|
7 |
+
def load_modified_model(model_path):
|
8 |
+
return tf.keras.models.load_model(model_path)
|
9 |
+
|
10 |
+
# Load the trained model
|
11 |
+
print("Loading model...")
|
12 |
+
model = load_modified_model('food_model_1.h5')
|
13 |
+
print("Model loaded successfully.")
|
14 |
+
|
15 |
+
# Function to classify food vs. non-food image using the loaded model
|
16 |
+
def classify_food_vs_nonfood(image):
|
17 |
+
try:
|
18 |
+
# Preprocess image
|
19 |
+
image_size = (224, 224)
|
20 |
+
image = image.resize(image_size)
|
21 |
+
image_np = np.array(image) / 255.0
|
22 |
+
image_np_expanded = np.expand_dims(image_np, axis=0)
|
23 |
+
|
24 |
+
# Make prediction
|
25 |
+
prediction = model.predict(image_np_expanded)
|
26 |
+
final_prediction = np.argmax(prediction[0])
|
27 |
+
|
28 |
+
# Display result
|
29 |
+
results = {0: 'Food', 1: 'Non Food'}
|
30 |
+
label = results[final_prediction]
|
31 |
+
|
32 |
+
# Create a draw object
|
33 |
+
draw = ImageDraw.Draw(image)
|
34 |
+
|
35 |
+
# Specify font and size
|
36 |
+
font = ImageFont.load_default()
|
37 |
+
|
38 |
+
# Get text size
|
39 |
+
text_font = ImageFont.truetype("Hack-Regular.ttf", 24)
|
40 |
+
text_bbox = draw.textbbox((0, 0), label, font=text_font)
|
41 |
+
text_size = (text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1])
|
42 |
+
|
43 |
+
# Calculate text position
|
44 |
+
text_position = ((image_size[0] - text_size[0]) // 2, 10)
|
45 |
+
|
46 |
+
# Add text to the image
|
47 |
+
draw.text(text_position, label, fill=(255, 0, 0), font=text_font)
|
48 |
+
|
49 |
+
# Return modified image
|
50 |
+
return image
|
51 |
+
except Exception as e:
|
52 |
+
print("Error processing image:", e)
|
53 |
+
|
54 |
+
# Define inputs for Gradio interface
|
55 |
+
image_input = gr.inputs.Image(shape=(224, 224), type="pil")
|
56 |
+
|
57 |
+
# Define example images as file paths
|
58 |
+
ex_image_paths = ['image_1.jpeg', 'image_2.jpeg', 'image_3.jpeg', 'image_4.jpg', 'image_5.jpg']
|
59 |
+
|
60 |
+
# Launch Gradio interface with example images
|
61 |
+
food_vs_nonfood_interface = gr.Interface(classify_food_vs_nonfood,
|
62 |
+
inputs=image_input,
|
63 |
+
outputs="image",
|
64 |
+
title="Food vs NonFood Classifier",
|
65 |
+
description="Upload an image to classify whether it's food or non-food.",
|
66 |
+
examples=ex_image_paths)
|
67 |
+
food_vs_nonfood_interface.launch(inline=False)
|
food_model_1.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fd2eeedbf4f912f6ed804bcdae6b5c31ddc9104ee1cf99a26f0db4cb57e6614
|
3 |
+
size 104860792
|
image_1.jpeg
ADDED
image_2.jpeg
ADDED
image_3.jpeg
ADDED
image_4.jpg
ADDED
image_5.jpg
ADDED
requirements.txt
ADDED
Binary file (354 Bytes). View file
|
|