import numpy as np import gradio as gr import tensorflow as tf from PIL import Image, ImageDraw, ImageFont model = tf.keras.models.load_model('denseNet121.h5') def classify_food_vs_nonfood(image): try: # Preprocess image #image_size = (224, 224) #image = image.resize(image_size) #image_np = np.array(image) / 255.0 #image_np_expanded = np.expand_dims(image_np, axis=0) image_np_expanded = np.expand_dims(np.array(image.resize((224, 224))) / 255.0, axis=0) # Make prediction prediction = model.predict(image_np_expanded) final_prediction = np.argmax(prediction[0]) # Display result results = {0: 'Food', 1: 'Non Food'} label = results[final_prediction] # Create a draw object draw = ImageDraw.Draw(image) # Specify font and size font = ImageFont.load_default() # Get text size text_font = ImageFont.truetype("Hack-Regular.ttf", 24) text_bbox = draw.textbbox((0, 0), label, font=text_font) text_size = (text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]) # Calculate text position text_position = ((image_size[0] - text_size[0]) // 2, 10) # Add text to the image draw.text(text_position, label, fill=(255, 0, 0), font=text_font) # Return modified image return image except Exception as e: print("Error processing image:", e) # Define inputs for Gradio interface image_input = gr.inputs.Image(shape=(224, 224), type="pil") # Define example images as file paths ex_image_paths = ['image_1.jpeg', 'image_2.jpeg', 'image_3.jpeg', 'image_4.jpg', 'Panama-early-c01_resize.jpg', 'Tomato_YLCV.jpg', 'downy-mildew-disease.jpg', 'jounalism-plant-photo.jpg', 'pexels_facemask.jpg', 'rice_leaf_healthy.jpg', 'rice_leaf_unhealthy.png', '00000007.jpg', '000000000009.jpg', "A-cacao-tree-affected-by-witches’-broom.jpg", "DLSU_logo.png"] # Launch Gradio interface with example images food_vs_nonfood_interface = gr.Interface(classify_food_vs_nonfood, inputs=image_input, outputs="image", title="Food vs NonFood Classifier", description="Upload an image to classify whether it's food or non-food.", examples=ex_image_paths) food_vs_nonfood_interface.launch(inline=False)