import numpy as np import gradio as gr import tensorflow as tf from PIL import Image, ImageDraw, ImageFont # Function to load the modified model without recompiling def load_modified_model(model_path): return tf.keras.models.load_model(model_path) # Load the trained model print("Loading model...") model = load_modified_model('denseNet121.h5') print("Model loaded successfully.") # Function to classify food vs. non-food image using the loaded model def classify_food_vs_nonfood(image): try: # Preprocess image image_size = (224, 224) image = image.resize(image_size) image_np = np.array(image) / 255.0 image_np_expanded = np.expand_dims(image_np, axis=0) # Make prediction prediction = model.predict(image_np_expanded) final_prediction = np.argmax(prediction[0]) # Display result results = {0: 'Food', 1: 'Non Food'} label = results[final_prediction] # Create a draw object draw = ImageDraw.Draw(image) # Specify font and size font = ImageFont.load_default() # Get text size text_font = ImageFont.truetype("Hack-Regular.ttf", 24) text_bbox = draw.textbbox((0, 0), label, font=text_font) text_size = (text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]) # Calculate text position text_position = ((image_size[0] - text_size[0]) // 2, 10) # Add text to the image draw.text(text_position, label, fill=(255, 0, 0), font=text_font) # Return modified image return image except Exception as e: print("Error processing image:", e) # Define inputs for Gradio interface image_input = gr.inputs.Image(shape=(224, 224), type="pil") # Define example images as file paths ex_image_paths = ['image_1.jpeg', 'image_2.jpeg', 'image_3.jpeg', 'image_4.jpg', 'image_5.jpg'] # Launch Gradio interface with example images food_vs_nonfood_interface = gr.Interface(classify_food_vs_nonfood, inputs=image_input, outputs="image", title="Food vs NonFood Classifier", description="Upload an image to classify whether it's food or non-food.", examples=ex_image_paths) food_vs_nonfood_interface.launch(inline=False)