Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Mon Feb 6 09:56:29 2023
|
4 |
+
|
5 |
+
@author: HP
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import pickle
|
11 |
+
import streamlit as st
|
12 |
+
|
13 |
+
# loading the saved model
|
14 |
+
#loaded_model = pickle.load(open('medical_insurance_cost_predictor.sav', 'rb'))
|
15 |
+
loaded_model = pickle.load(open('medical_insurance_cost_predictor.h5', 'rb'))
|
16 |
+
|
17 |
+
#creating a function for Prediction
|
18 |
+
def medical_insurance_cost_prediction(input_data):
|
19 |
+
# changing the input_data to numpy array
|
20 |
+
input_data_as_numpy_array = np.asarray(input_data)
|
21 |
+
|
22 |
+
# reshape the array as we are predicting for one instance
|
23 |
+
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
|
24 |
+
|
25 |
+
prediction = loaded_model.predict(input_data_reshaped)
|
26 |
+
print(prediction)
|
27 |
+
|
28 |
+
return prediction
|
29 |
+
|
30 |
+
def main():
|
31 |
+
|
32 |
+
#giving a title
|
33 |
+
#st.title('Medical Insurance Prediction Web App')
|
34 |
+
st.title('It is working!!!')
|
35 |
+
|
36 |
+
#getting input from the user
|
37 |
+
|
38 |
+
age = st.text_input('Age')
|
39 |
+
sex = st.text_input('Sex: 0 -> Female, 1 -> Male')
|
40 |
+
bmi = st.text_input('Body Mass Index')
|
41 |
+
children = st.text_input('Number of Children')
|
42 |
+
smoker = st.text_input('Smoker: 0 -> No, 1 -> Yes')
|
43 |
+
region = st.text_input('Region of Living: 0 -> NorthEast, 1-> NorthWest, 2-> SouthEast, 3-> SouthWest')
|
44 |
+
|
45 |
+
#code for prediction
|
46 |
+
diagnosis = ''
|
47 |
+
|
48 |
+
# getting the input data from the user
|
49 |
+
#if st.button('Predicted Medical Insurance Cost: '):
|
50 |
+
if st.button('Hit this button!: '):
|
51 |
+
diagnosis = medical_insurance_cost_prediction([age,sex,bmi,children,smoker,region])
|
52 |
+
|
53 |
+
st.success(diagnosis)
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == '__main__':
|
57 |
+
main()
|