jaylen wangrongsheng commited on
Commit
f0c9b4b
·
0 Parent(s):

Duplicate from wangrongsheng/ChatImprovement

Browse files

Co-authored-by: wangrongsheng <wangrongsheng@users.noreply.huggingface.co>

Files changed (42) hide show
  1. .gitattributes +34 -0
  2. README.md +13 -0
  3. app.py +91 -0
  4. check_proxy.py +22 -0
  5. config.py +29 -0
  6. crazy_functions/test_project/cpp/cppipc/buffer.cpp +87 -0
  7. crazy_functions/test_project/cpp/cppipc/ipc.cpp +701 -0
  8. crazy_functions/test_project/cpp/cppipc/policy.h +25 -0
  9. crazy_functions/test_project/cpp/cppipc/pool_alloc.cpp +17 -0
  10. crazy_functions/test_project/cpp/cppipc/prod_cons.h +433 -0
  11. crazy_functions/test_project/cpp/cppipc/queue.h +216 -0
  12. crazy_functions/test_project/cpp/cppipc/shm.cpp +103 -0
  13. crazy_functions/test_project/cpp/cppipc/waiter.h +83 -0
  14. crazy_functions/test_project/cpp/cppipc/来源 +3 -0
  15. crazy_functions/test_project/cpp/libJPG/JpegLibrary.tps +15 -0
  16. crazy_functions/test_project/cpp/libJPG/UElibJPG.Build.cs +17 -0
  17. crazy_functions/test_project/cpp/libJPG/jpeg-compressor.tps +15 -0
  18. crazy_functions/test_project/cpp/libJPG/jpgd.cpp +3276 -0
  19. crazy_functions/test_project/cpp/libJPG/jpgd.h +316 -0
  20. crazy_functions/test_project/cpp/libJPG/jpge.cpp +1049 -0
  21. crazy_functions/test_project/cpp/libJPG/jpge.h +172 -0
  22. crazy_functions/test_project/cpp/libJPG/来源 +3 -0
  23. crazy_functions/test_project/latex/attention/background.tex +58 -0
  24. crazy_functions/test_project/latex/attention/introduction.tex +18 -0
  25. crazy_functions/test_project/latex/attention/model_architecture.tex +155 -0
  26. crazy_functions/test_project/latex/attention/parameter_attention.tex +45 -0
  27. crazy_functions/test_project/latex/attention/来源 +8 -0
  28. crazy_functions/test_project/python/dqn/__init__.py +2 -0
  29. crazy_functions/test_project/python/dqn/dqn.py +245 -0
  30. crazy_functions/test_project/python/dqn/policies.py +237 -0
  31. crazy_functions/test_project/python/dqn/来源 +2 -0
  32. crazy_functions/test_project/其他测试 +27 -0
  33. crazy_functions/生成函数注释.py +57 -0
  34. crazy_functions/解析项目源代码.py +129 -0
  35. crazy_functions/读文章写摘要.py +70 -0
  36. crazy_functions/高级功能函数模板.py +17 -0
  37. functional.py +54 -0
  38. functional_crazy.py +36 -0
  39. predict.py +161 -0
  40. requirements.txt +3 -0
  41. show_math.py +80 -0
  42. toolbox.py +140 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ChatImprovement
3
+ emoji: 😻
4
+ colorFrom: blue
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.23.0
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: wangrongsheng/ChatImprovement
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os; os.environ['no_proxy'] = '*'
2
+ import gradio as gr
3
+ from predict import predict
4
+ from toolbox import format_io, find_free_port
5
+
6
+ try: from config_private import proxies, WEB_PORT # 放自己的秘密如API和代理网址 os.path.exists('config_private.py')
7
+ except: from config import proxies, WEB_PORT
8
+
9
+ PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
10
+
11
+ initial_prompt = "Serve me as a writing and programming assistant."
12
+ title_html = """<h1 align="center">ChatGPT 学术优化</h1>"""
13
+
14
+ description = """<div align=center>
15
+
16
+ 本项目参考自[chatgpt_academic](https://github.com/binary-husky/chatgpt_academic)
17
+
18
+ </div>
19
+ """
20
+
21
+ import logging
22
+ os.makedirs('gpt_log', exist_ok=True)
23
+ logging.basicConfig(filename='gpt_log/chat_secrets.log', level=logging.INFO)
24
+ #print('所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log,请注意自我隐私保护哦!')
25
+
26
+ # 一些普通功能
27
+ from functional import get_functionals
28
+ functional = get_functionals()
29
+
30
+ # 对一些丧心病狂的实验性功能进行测试
31
+ from functional_crazy import get_crazy_functionals
32
+ crazy_functional = get_crazy_functionals()
33
+
34
+ gr.Chatbot.postprocess = format_io
35
+
36
+ with gr.Blocks() as demo:
37
+ gr.HTML(title_html)
38
+ with gr.Row():
39
+ with gr.Column(scale=2):
40
+ chatbot = gr.Chatbot()
41
+ chatbot.style(height=1000)
42
+ chatbot.style()
43
+ history = gr.State([])
44
+ TRUE = gr.State(True)
45
+ FALSE = gr.State(False)
46
+ with gr.Column(scale=1):
47
+ with gr.Row():
48
+ with gr.Column(scale=12):
49
+ api = gr.Textbox(show_label=False, placeholder="Input OpenAI Key.").style(container=False)
50
+ with gr.Column(scale=12):
51
+ txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False)
52
+ with gr.Column(scale=1):
53
+ submitBtn = gr.Button("Ask", variant="primary")
54
+ with gr.Row():
55
+ for k in functional:
56
+ variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
57
+ functional[k]["Button"] = gr.Button(k, variant=variant)
58
+ #for k in crazy_functional:
59
+ # variant = crazy_functional[k]["Color"] if "Color" in crazy_functional[k] else "secondary"
60
+ # crazy_functional[k]["Button"] = gr.Button(k, variant=variant)
61
+ from check_proxy import check_proxy
62
+ statusDisplay = gr.Markdown(f"{check_proxy(proxies)}")
63
+ systemPromptTxt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt).style(container=True)
64
+ #inputs, top_p, temperature, top_k, repetition_penalty
65
+ with gr.Accordion("arguments", open=False):
66
+ top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
67
+ temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
68
+
69
+ gr.Markdown(description)
70
+
71
+ txt.submit(predict, [api, txt, top_p, temperature, chatbot, history, systemPromptTxt], [chatbot, history, statusDisplay])
72
+ submitBtn.click(predict, [api, txt, top_p, temperature, chatbot, history, systemPromptTxt], [chatbot, history, statusDisplay], show_progress=True)
73
+ for k in functional:
74
+ functional[k]["Button"].click(predict,
75
+ [api, txt, top_p, temperature, chatbot, history, systemPromptTxt, TRUE, gr.State(k)], [chatbot, history, statusDisplay], show_progress=True)
76
+ #for k in crazy_functional:
77
+ # crazy_functional[k]["Button"].click(crazy_functional[k]["Function"],
78
+ # [txt, top_p, temperature, chatbot, history, systemPromptTxt, gr.State(PORT)], [chatbot, history, statusDisplay])
79
+
80
+
81
+ def auto_opentab_delay():
82
+ import threading, webbrowser, time
83
+ print(f"URL http://localhost:{PORT}")
84
+ def open(): time.sleep(2)
85
+ webbrowser.open_new_tab(f'http://localhost:{PORT}')
86
+ t = threading.Thread(target=open)
87
+ t.daemon = True; t.start()
88
+
89
+ auto_opentab_delay()
90
+ demo.title = "ChatGPT 学术优化"
91
+ demo.queue().launch(share=False)
check_proxy.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ def check_proxy(proxies):
3
+ import requests
4
+ proxies_https = proxies['https'] if proxies is not None else '无'
5
+ try:
6
+ response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4)
7
+ data = response.json()
8
+ print(f'查询代理的地理位置,返回的结果是{data}')
9
+ country = data['country_name']
10
+ result = f"代理配置 {proxies_https}, 代理所在地:{country}"
11
+ print(result)
12
+ return result
13
+ except:
14
+ result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
15
+ print(result)
16
+ return result
17
+
18
+
19
+ if __name__ == '__main__':
20
+ try: from config_private import proxies # 放自己的秘密如API和代理网址 os.path.exists('config_private.py')
21
+ except: from config import proxies
22
+ check_proxy(proxies)
config.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # API_KEY = "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" 此key无效
2
+ #API_KEY = "sk-此处填API秘钥"
3
+ API_URL = "https://api.openai.com/v1/chat/completions"
4
+
5
+ # 改为True应用代理
6
+ USE_PROXY = False
7
+ if USE_PROXY:
8
+ # 代理网络的地址,打开你的科学上网软件查看代理的协议(socks5/http)、地址(localhost)和端口(11284)
9
+ proxies = { "http": "socks5h://localhost:11284", "https": "socks5h://localhost:11284", }
10
+ print('网络代理状态:运行。')
11
+ else:
12
+ proxies = None
13
+ print('网络代理状态:未配置。无代理状态下很可能无法访问。')
14
+
15
+ # 发送请求到OpenAI后,等待多久判定为超时
16
+ TIMEOUT_SECONDS = 120
17
+
18
+ # 网页的端口, -1代表随机端口
19
+ WEB_PORT = -1
20
+
21
+ # 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
22
+ MAX_RETRY = 2
23
+
24
+ # 选择的OpenAI模型是(gpt4现在只对申请成功的人开放)
25
+ LLM_MODEL = "gpt-3.5-turbo"
26
+
27
+ # 检查一下是不是忘了改config
28
+ #if API_KEY == "sk-此处填API秘钥":
29
+ # assert False, "请在config文件中修改API密钥, 添加海外代理之后再运行"
crazy_functions/test_project/cpp/cppipc/buffer.cpp ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "libipc/buffer.h"
2
+ #include "libipc/utility/pimpl.h"
3
+
4
+ #include <cstring>
5
+
6
+ namespace ipc {
7
+
8
+ bool operator==(buffer const & b1, buffer const & b2) {
9
+ return (b1.size() == b2.size()) && (std::memcmp(b1.data(), b2.data(), b1.size()) == 0);
10
+ }
11
+
12
+ bool operator!=(buffer const & b1, buffer const & b2) {
13
+ return !(b1 == b2);
14
+ }
15
+
16
+ class buffer::buffer_ : public pimpl<buffer_> {
17
+ public:
18
+ void* p_;
19
+ std::size_t s_;
20
+ void* a_;
21
+ buffer::destructor_t d_;
22
+
23
+ buffer_(void* p, std::size_t s, buffer::destructor_t d, void* a)
24
+ : p_(p), s_(s), a_(a), d_(d) {
25
+ }
26
+
27
+ ~buffer_() {
28
+ if (d_ == nullptr) return;
29
+ d_((a_ == nullptr) ? p_ : a_, s_);
30
+ }
31
+ };
32
+
33
+ buffer::buffer()
34
+ : buffer(nullptr, 0, nullptr, nullptr) {
35
+ }
36
+
37
+ buffer::buffer(void* p, std::size_t s, destructor_t d)
38
+ : p_(p_->make(p, s, d, nullptr)) {
39
+ }
40
+
41
+ buffer::buffer(void* p, std::size_t s, destructor_t d, void* additional)
42
+ : p_(p_->make(p, s, d, additional)) {
43
+ }
44
+
45
+ buffer::buffer(void* p, std::size_t s)
46
+ : buffer(p, s, nullptr) {
47
+ }
48
+
49
+ buffer::buffer(char const & c)
50
+ : buffer(const_cast<char*>(&c), 1) {
51
+ }
52
+
53
+ buffer::buffer(buffer&& rhs)
54
+ : buffer() {
55
+ swap(rhs);
56
+ }
57
+
58
+ buffer::~buffer() {
59
+ p_->clear();
60
+ }
61
+
62
+ void buffer::swap(buffer& rhs) {
63
+ std::swap(p_, rhs.p_);
64
+ }
65
+
66
+ buffer& buffer::operator=(buffer rhs) {
67
+ swap(rhs);
68
+ return *this;
69
+ }
70
+
71
+ bool buffer::empty() const noexcept {
72
+ return (impl(p_)->p_ == nullptr) || (impl(p_)->s_ == 0);
73
+ }
74
+
75
+ void* buffer::data() noexcept {
76
+ return impl(p_)->p_;
77
+ }
78
+
79
+ void const * buffer::data() const noexcept {
80
+ return impl(p_)->p_;
81
+ }
82
+
83
+ std::size_t buffer::size() const noexcept {
84
+ return impl(p_)->s_;
85
+ }
86
+
87
+ } // namespace ipc
crazy_functions/test_project/cpp/cppipc/ipc.cpp ADDED
@@ -0,0 +1,701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #include <type_traits>
3
+ #include <cstring>
4
+ #include <algorithm>
5
+ #include <utility> // std::pair, std::move, std::forward
6
+ #include <atomic>
7
+ #include <type_traits> // aligned_storage_t
8
+ #include <string>
9
+ #include <vector>
10
+ #include <array>
11
+ #include <cassert>
12
+
13
+ #include "libipc/ipc.h"
14
+ #include "libipc/def.h"
15
+ #include "libipc/shm.h"
16
+ #include "libipc/pool_alloc.h"
17
+ #include "libipc/queue.h"
18
+ #include "libipc/policy.h"
19
+ #include "libipc/rw_lock.h"
20
+ #include "libipc/waiter.h"
21
+
22
+ #include "libipc/utility/log.h"
23
+ #include "libipc/utility/id_pool.h"
24
+ #include "libipc/utility/scope_guard.h"
25
+ #include "libipc/utility/utility.h"
26
+
27
+ #include "libipc/memory/resource.h"
28
+ #include "libipc/platform/detail.h"
29
+ #include "libipc/circ/elem_array.h"
30
+
31
+ namespace {
32
+
33
+ using msg_id_t = std::uint32_t;
34
+ using acc_t = std::atomic<msg_id_t>;
35
+
36
+ template <std::size_t DataSize, std::size_t AlignSize>
37
+ struct msg_t;
38
+
39
+ template <std::size_t AlignSize>
40
+ struct msg_t<0, AlignSize> {
41
+ msg_id_t cc_id_;
42
+ msg_id_t id_;
43
+ std::int32_t remain_;
44
+ bool storage_;
45
+ };
46
+
47
+ template <std::size_t DataSize, std::size_t AlignSize>
48
+ struct msg_t : msg_t<0, AlignSize> {
49
+ std::aligned_storage_t<DataSize, AlignSize> data_ {};
50
+
51
+ msg_t() = default;
52
+ msg_t(msg_id_t cc_id, msg_id_t id, std::int32_t remain, void const * data, std::size_t size)
53
+ : msg_t<0, AlignSize> {cc_id, id, remain, (data == nullptr) || (size == 0)} {
54
+ if (this->storage_) {
55
+ if (data != nullptr) {
56
+ // copy storage-id
57
+ *reinterpret_cast<ipc::storage_id_t*>(&data_) =
58
+ *static_cast<ipc::storage_id_t const *>(data);
59
+ }
60
+ }
61
+ else std::memcpy(&data_, data, size);
62
+ }
63
+ };
64
+
65
+ template <typename T>
66
+ ipc::buff_t make_cache(T& data, std::size_t size) {
67
+ auto ptr = ipc::mem::alloc(size);
68
+ std::memcpy(ptr, &data, (ipc::detail::min)(sizeof(data), size));
69
+ return { ptr, size, ipc::mem::free };
70
+ }
71
+
72
+ struct cache_t {
73
+ std::size_t fill_;
74
+ ipc::buff_t buff_;
75
+
76
+ cache_t(std::size_t f, ipc::buff_t && b)
77
+ : fill_(f), buff_(std::move(b))
78
+ {}
79
+
80
+ void append(void const * data, std::size_t size) {
81
+ if (fill_ >= buff_.size() || data == nullptr || size == 0) return;
82
+ auto new_fill = (ipc::detail::min)(fill_ + size, buff_.size());
83
+ std::memcpy(static_cast<ipc::byte_t*>(buff_.data()) + fill_, data, new_fill - fill_);
84
+ fill_ = new_fill;
85
+ }
86
+ };
87
+
88
+ auto cc_acc() {
89
+ static ipc::shm::handle acc_h("__CA_CONN__", sizeof(acc_t));
90
+ return static_cast<acc_t*>(acc_h.get());
91
+ }
92
+
93
+ IPC_CONSTEXPR_ std::size_t align_chunk_size(std::size_t size) noexcept {
94
+ return (((size - 1) / ipc::large_msg_align) + 1) * ipc::large_msg_align;
95
+ }
96
+
97
+ IPC_CONSTEXPR_ std::size_t calc_chunk_size(std::size_t size) noexcept {
98
+ return ipc::make_align(alignof(std::max_align_t), align_chunk_size(
99
+ ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>)) + size));
100
+ }
101
+
102
+ struct chunk_t {
103
+ std::atomic<ipc::circ::cc_t> &conns() noexcept {
104
+ return *reinterpret_cast<std::atomic<ipc::circ::cc_t> *>(this);
105
+ }
106
+
107
+ void *data() noexcept {
108
+ return reinterpret_cast<ipc::byte_t *>(this)
109
+ + ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>));
110
+ }
111
+ };
112
+
113
+ struct chunk_info_t {
114
+ ipc::id_pool<> pool_;
115
+ ipc::spin_lock lock_;
116
+
117
+ IPC_CONSTEXPR_ static std::size_t chunks_mem_size(std::size_t chunk_size) noexcept {
118
+ return ipc::id_pool<>::max_count * chunk_size;
119
+ }
120
+
121
+ ipc::byte_t *chunks_mem() noexcept {
122
+ return reinterpret_cast<ipc::byte_t *>(this + 1);
123
+ }
124
+
125
+ chunk_t *at(std::size_t chunk_size, ipc::storage_id_t id) noexcept {
126
+ if (id < 0) return nullptr;
127
+ return reinterpret_cast<chunk_t *>(chunks_mem() + (chunk_size * id));
128
+ }
129
+ };
130
+
131
+ auto& chunk_storages() {
132
+ class chunk_handle_t {
133
+ ipc::shm::handle handle_;
134
+
135
+ public:
136
+ chunk_info_t *get_info(std::size_t chunk_size) {
137
+ if (!handle_.valid() &&
138
+ !handle_.acquire( ("__CHUNK_INFO__" + ipc::to_string(chunk_size)).c_str(),
139
+ sizeof(chunk_info_t) + chunk_info_t::chunks_mem_size(chunk_size) )) {
140
+ ipc::error("[chunk_storages] chunk_shm.id_info_.acquire failed: chunk_size = %zd\n", chunk_size);
141
+ return nullptr;
142
+ }
143
+ auto info = static_cast<chunk_info_t*>(handle_.get());
144
+ if (info == nullptr) {
145
+ ipc::error("[chunk_storages] chunk_shm.id_info_.get failed: chunk_size = %zd\n", chunk_size);
146
+ return nullptr;
147
+ }
148
+ return info;
149
+ }
150
+ };
151
+ static ipc::map<std::size_t, chunk_handle_t> chunk_hs;
152
+ return chunk_hs;
153
+ }
154
+
155
+ chunk_info_t *chunk_storage_info(std::size_t chunk_size) {
156
+ auto &storages = chunk_storages();
157
+ std::decay_t<decltype(storages)>::iterator it;
158
+ {
159
+ static ipc::rw_lock lock;
160
+ IPC_UNUSED_ std::shared_lock<ipc::rw_lock> guard {lock};
161
+ if ((it = storages.find(chunk_size)) == storages.end()) {
162
+ using chunk_handle_t = std::decay_t<decltype(storages)>::value_type::second_type;
163
+ guard.unlock();
164
+ IPC_UNUSED_ std::lock_guard<ipc::rw_lock> guard {lock};
165
+ it = storages.emplace(chunk_size, chunk_handle_t{}).first;
166
+ }
167
+ }
168
+ return it->second.get_info(chunk_size);
169
+ }
170
+
171
+ std::pair<ipc::storage_id_t, void*> acquire_storage(std::size_t size, ipc::circ::cc_t conns) {
172
+ std::size_t chunk_size = calc_chunk_size(size);
173
+ auto info = chunk_storage_info(chunk_size);
174
+ if (info == nullptr) return {};
175
+
176
+ info->lock_.lock();
177
+ info->pool_.prepare();
178
+ // got an unique id
179
+ auto id = info->pool_.acquire();
180
+ info->lock_.unlock();
181
+
182
+ auto chunk = info->at(chunk_size, id);
183
+ if (chunk == nullptr) return {};
184
+ chunk->conns().store(conns, std::memory_order_relaxed);
185
+ return { id, chunk->data() };
186
+ }
187
+
188
+ void *find_storage(ipc::storage_id_t id, std::size_t size) {
189
+ if (id < 0) {
190
+ ipc::error("[find_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
191
+ return nullptr;
192
+ }
193
+ std::size_t chunk_size = calc_chunk_size(size);
194
+ auto info = chunk_storage_info(chunk_size);
195
+ if (info == nullptr) return nullptr;
196
+ return info->at(chunk_size, id)->data();
197
+ }
198
+
199
+ void release_storage(ipc::storage_id_t id, std::size_t size) {
200
+ if (id < 0) {
201
+ ipc::error("[release_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
202
+ return;
203
+ }
204
+ std::size_t chunk_size = calc_chunk_size(size);
205
+ auto info = chunk_storage_info(chunk_size);
206
+ if (info == nullptr) return;
207
+ info->lock_.lock();
208
+ info->pool_.release(id);
209
+ info->lock_.unlock();
210
+ }
211
+
212
+ template <ipc::relat Rp, ipc::relat Rc>
213
+ bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::unicast>,
214
+ std::atomic<ipc::circ::cc_t> &/*conns*/, ipc::circ::cc_t /*curr_conns*/, ipc::circ::cc_t /*conn_id*/) noexcept {
215
+ return true;
216
+ }
217
+
218
+ template <ipc::relat Rp, ipc::relat Rc>
219
+ bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::broadcast>,
220
+ std::atomic<ipc::circ::cc_t> &conns, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) noexcept {
221
+ auto last_conns = curr_conns & ~conn_id;
222
+ for (unsigned k = 0;;) {
223
+ auto chunk_conns = conns.load(std::memory_order_acquire);
224
+ if (conns.compare_exchange_weak(chunk_conns, chunk_conns & last_conns, std::memory_order_release)) {
225
+ return (chunk_conns & last_conns) == 0;
226
+ }
227
+ ipc::yield(k);
228
+ }
229
+ }
230
+
231
+ template <typename Flag>
232
+ void recycle_storage(ipc::storage_id_t id, std::size_t size, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) {
233
+ if (id < 0) {
234
+ ipc::error("[recycle_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
235
+ return;
236
+ }
237
+ std::size_t chunk_size = calc_chunk_size(size);
238
+ auto info = chunk_storage_info(chunk_size);
239
+ if (info == nullptr) return;
240
+
241
+ auto chunk = info->at(chunk_size, id);
242
+ if (chunk == nullptr) return;
243
+
244
+ if (!sub_rc(Flag{}, chunk->conns(), curr_conns, conn_id)) {
245
+ return;
246
+ }
247
+ info->lock_.lock();
248
+ info->pool_.release(id);
249
+ info->lock_.unlock();
250
+ }
251
+
252
+ template <typename MsgT>
253
+ bool clear_message(void* p) {
254
+ auto msg = static_cast<MsgT*>(p);
255
+ if (msg->storage_) {
256
+ std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg->remain_;
257
+ if (r_size <= 0) {
258
+ ipc::error("[clear_message] invalid msg size: %d\n", (int)r_size);
259
+ return true;
260
+ }
261
+ release_storage(
262
+ *reinterpret_cast<ipc::storage_id_t*>(&msg->data_),
263
+ static_cast<std::size_t>(r_size));
264
+ }
265
+ return true;
266
+ }
267
+
268
+ struct conn_info_head {
269
+
270
+ ipc::string name_;
271
+ msg_id_t cc_id_; // connection-info id
272
+ ipc::detail::waiter cc_waiter_, wt_waiter_, rd_waiter_;
273
+ ipc::shm::handle acc_h_;
274
+
275
+ conn_info_head(char const * name)
276
+ : name_ {name}
277
+ , cc_id_ {(cc_acc() == nullptr) ? 0 : cc_acc()->fetch_add(1, std::memory_order_relaxed)}
278
+ , cc_waiter_{("__CC_CONN__" + name_).c_str()}
279
+ , wt_waiter_{("__WT_CONN__" + name_).c_str()}
280
+ , rd_waiter_{("__RD_CONN__" + name_).c_str()}
281
+ , acc_h_ {("__AC_CONN__" + name_).c_str(), sizeof(acc_t)} {
282
+ }
283
+
284
+ void quit_waiting() {
285
+ cc_waiter_.quit_waiting();
286
+ wt_waiter_.quit_waiting();
287
+ rd_waiter_.quit_waiting();
288
+ }
289
+
290
+ auto acc() {
291
+ return static_cast<acc_t*>(acc_h_.get());
292
+ }
293
+
294
+ auto& recv_cache() {
295
+ thread_local ipc::unordered_map<msg_id_t, cache_t> tls;
296
+ return tls;
297
+ }
298
+ };
299
+
300
+ template <typename W, typename F>
301
+ bool wait_for(W& waiter, F&& pred, std::uint64_t tm) {
302
+ if (tm == 0) return !pred();
303
+ for (unsigned k = 0; pred();) {
304
+ bool ret = true;
305
+ ipc::sleep(k, [&k, &ret, &waiter, &pred, tm] {
306
+ ret = waiter.wait_if(std::forward<F>(pred), tm);
307
+ k = 0;
308
+ });
309
+ if (!ret) return false; // timeout or fail
310
+ if (k == 0) break; // k has been reset
311
+ }
312
+ return true;
313
+ }
314
+
315
+ template <typename Policy,
316
+ std::size_t DataSize = ipc::data_length,
317
+ std::size_t AlignSize = (ipc::detail::min)(DataSize, alignof(std::max_align_t))>
318
+ struct queue_generator {
319
+
320
+ using queue_t = ipc::queue<msg_t<DataSize, AlignSize>, Policy>;
321
+
322
+ struct conn_info_t : conn_info_head {
323
+ queue_t que_;
324
+
325
+ conn_info_t(char const * name)
326
+ : conn_info_head{name}
327
+ , que_{("__QU_CONN__" +
328
+ ipc::to_string(DataSize) + "__" +
329
+ ipc::to_string(AlignSize) + "__" + name).c_str()} {
330
+ }
331
+
332
+ void disconnect_receiver() {
333
+ bool dis = que_.disconnect();
334
+ this->quit_waiting();
335
+ if (dis) {
336
+ this->recv_cache().clear();
337
+ }
338
+ }
339
+ };
340
+ };
341
+
342
+ template <typename Policy>
343
+ struct detail_impl {
344
+
345
+ using policy_t = Policy;
346
+ using flag_t = typename policy_t::flag_t;
347
+ using queue_t = typename queue_generator<policy_t>::queue_t;
348
+ using conn_info_t = typename queue_generator<policy_t>::conn_info_t;
349
+
350
+ constexpr static conn_info_t* info_of(ipc::handle_t h) noexcept {
351
+ return static_cast<conn_info_t*>(h);
352
+ }
353
+
354
+ constexpr static queue_t* queue_of(ipc::handle_t h) noexcept {
355
+ return (info_of(h) == nullptr) ? nullptr : &(info_of(h)->que_);
356
+ }
357
+
358
+ /* API implementations */
359
+
360
+ static void disconnect(ipc::handle_t h) {
361
+ auto que = queue_of(h);
362
+ if (que == nullptr) {
363
+ return;
364
+ }
365
+ que->shut_sending();
366
+ assert(info_of(h) != nullptr);
367
+ info_of(h)->disconnect_receiver();
368
+ }
369
+
370
+ static bool reconnect(ipc::handle_t * ph, bool start_to_recv) {
371
+ assert(ph != nullptr);
372
+ assert(*ph != nullptr);
373
+ auto que = queue_of(*ph);
374
+ if (que == nullptr) {
375
+ return false;
376
+ }
377
+ if (start_to_recv) {
378
+ que->shut_sending();
379
+ if (que->connect()) { // wouldn't connect twice
380
+ info_of(*ph)->cc_waiter_.broadcast();
381
+ return true;
382
+ }
383
+ return false;
384
+ }
385
+ // start_to_recv == false
386
+ if (que->connected()) {
387
+ info_of(*ph)->disconnect_receiver();
388
+ }
389
+ return que->ready_sending();
390
+ }
391
+
392
+ static bool connect(ipc::handle_t * ph, char const * name, bool start_to_recv) {
393
+ assert(ph != nullptr);
394
+ if (*ph == nullptr) {
395
+ *ph = ipc::mem::alloc<conn_info_t>(name);
396
+ }
397
+ return reconnect(ph, start_to_recv);
398
+ }
399
+
400
+ static void destroy(ipc::handle_t h) {
401
+ disconnect(h);
402
+ ipc::mem::free(info_of(h));
403
+ }
404
+
405
+ static std::size_t recv_count(ipc::handle_t h) noexcept {
406
+ auto que = queue_of(h);
407
+ if (que == nullptr) {
408
+ return ipc::invalid_value;
409
+ }
410
+ return que->conn_count();
411
+ }
412
+
413
+ static bool wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
414
+ auto que = queue_of(h);
415
+ if (que == nullptr) {
416
+ return false;
417
+ }
418
+ return wait_for(info_of(h)->cc_waiter_, [que, r_count] {
419
+ return que->conn_count() < r_count;
420
+ }, tm);
421
+ }
422
+
423
+ template <typename F>
424
+ static bool send(F&& gen_push, ipc::handle_t h, void const * data, std::size_t size) {
425
+ if (data == nullptr || size == 0) {
426
+ ipc::error("fail: send(%p, %zd)\n", data, size);
427
+ return false;
428
+ }
429
+ auto que = queue_of(h);
430
+ if (que == nullptr) {
431
+ ipc::error("fail: send, queue_of(h) == nullptr\n");
432
+ return false;
433
+ }
434
+ if (que->elems() == nullptr) {
435
+ ipc::error("fail: send, queue_of(h)->elems() == nullptr\n");
436
+ return false;
437
+ }
438
+ if (!que->ready_sending()) {
439
+ ipc::error("fail: send, que->ready_sending() == false\n");
440
+ return false;
441
+ }
442
+ ipc::circ::cc_t conns = que->elems()->connections(std::memory_order_relaxed);
443
+ if (conns == 0) {
444
+ ipc::error("fail: send, there is no receiver on this connection.\n");
445
+ return false;
446
+ }
447
+ // calc a new message id
448
+ auto acc = info_of(h)->acc();
449
+ if (acc == nullptr) {
450
+ ipc::error("fail: send, info_of(h)->acc() == nullptr\n");
451
+ return false;
452
+ }
453
+ auto msg_id = acc->fetch_add(1, std::memory_order_relaxed);
454
+ auto try_push = std::forward<F>(gen_push)(info_of(h), que, msg_id);
455
+ if (size > ipc::large_msg_limit) {
456
+ auto dat = acquire_storage(size, conns);
457
+ void * buf = dat.second;
458
+ if (buf != nullptr) {
459
+ std::memcpy(buf, data, size);
460
+ return try_push(static_cast<std::int32_t>(size) -
461
+ static_cast<std::int32_t>(ipc::data_length), &(dat.first), 0);
462
+ }
463
+ // try using message fragment
464
+ //ipc::log("fail: shm::handle for big message. msg_id: %zd, size: %zd\n", msg_id, size);
465
+ }
466
+ // push message fragment
467
+ std::int32_t offset = 0;
468
+ for (std::int32_t i = 0; i < static_cast<std::int32_t>(size / ipc::data_length); ++i, offset += ipc::data_length) {
469
+ if (!try_push(static_cast<std::int32_t>(size) - offset - static_cast<std::int32_t>(ipc::data_length),
470
+ static_cast<ipc::byte_t const *>(data) + offset, ipc::data_length)) {
471
+ return false;
472
+ }
473
+ }
474
+ // if remain > 0, this is the last message fragment
475
+ std::int32_t remain = static_cast<std::int32_t>(size) - offset;
476
+ if (remain > 0) {
477
+ if (!try_push(remain - static_cast<std::int32_t>(ipc::data_length),
478
+ static_cast<ipc::byte_t const *>(data) + offset,
479
+ static_cast<std::size_t>(remain))) {
480
+ return false;
481
+ }
482
+ }
483
+ return true;
484
+ }
485
+
486
+ static bool send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
487
+ return send([tm](auto info, auto que, auto msg_id) {
488
+ return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
489
+ if (!wait_for(info->wt_waiter_, [&] {
490
+ return !que->push(
491
+ [](void*) { return true; },
492
+ info->cc_id_, msg_id, remain, data, size);
493
+ }, tm)) {
494
+ ipc::log("force_push: msg_id = %zd, remain = %d, size = %zd\n", msg_id, remain, size);
495
+ if (!que->force_push(
496
+ clear_message<typename queue_t::value_t>,
497
+ info->cc_id_, msg_id, remain, data, size)) {
498
+ return false;
499
+ }
500
+ }
501
+ info->rd_waiter_.broadcast();
502
+ return true;
503
+ };
504
+ }, h, data, size);
505
+ }
506
+
507
+ static bool try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
508
+ return send([tm](auto info, auto que, auto msg_id) {
509
+ return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
510
+ if (!wait_for(info->wt_waiter_, [&] {
511
+ return !que->push(
512
+ [](void*) { return true; },
513
+ info->cc_id_, msg_id, remain, data, size);
514
+ }, tm)) {
515
+ return false;
516
+ }
517
+ info->rd_waiter_.broadcast();
518
+ return true;
519
+ };
520
+ }, h, data, size);
521
+ }
522
+
523
+ static ipc::buff_t recv(ipc::handle_t h, std::uint64_t tm) {
524
+ auto que = queue_of(h);
525
+ if (que == nullptr) {
526
+ ipc::error("fail: recv, queue_of(h) == nullptr\n");
527
+ return {};
528
+ }
529
+ if (!que->connected()) {
530
+ // hasn't connected yet, just return.
531
+ return {};
532
+ }
533
+ auto& rc = info_of(h)->recv_cache();
534
+ for (;;) {
535
+ // pop a new message
536
+ typename queue_t::value_t msg;
537
+ if (!wait_for(info_of(h)->rd_waiter_, [que, &msg] {
538
+ return !que->pop(msg);
539
+ }, tm)) {
540
+ // pop failed, just return.
541
+ return {};
542
+ }
543
+ info_of(h)->wt_waiter_.broadcast();
544
+ if ((info_of(h)->acc() != nullptr) && (msg.cc_id_ == info_of(h)->cc_id_)) {
545
+ continue; // ignore message to self
546
+ }
547
+ // msg.remain_ may minus & abs(msg.remain_) < data_length
548
+ std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg.remain_;
549
+ if (r_size <= 0) {
550
+ ipc::error("fail: recv, r_size = %d\n", (int)r_size);
551
+ return {};
552
+ }
553
+ std::size_t msg_size = static_cast<std::size_t>(r_size);
554
+ // large message
555
+ if (msg.storage_) {
556
+ ipc::storage_id_t buf_id = *reinterpret_cast<ipc::storage_id_t*>(&msg.data_);
557
+ void* buf = find_storage(buf_id, msg_size);
558
+ if (buf != nullptr) {
559
+ struct recycle_t {
560
+ ipc::storage_id_t storage_id;
561
+ ipc::circ::cc_t curr_conns;
562
+ ipc::circ::cc_t conn_id;
563
+ } *r_info = ipc::mem::alloc<recycle_t>(recycle_t{
564
+ buf_id, que->elems()->connections(std::memory_order_relaxed), que->connected_id()
565
+ });
566
+ if (r_info == nullptr) {
567
+ ipc::log("fail: ipc::mem::alloc<recycle_t>.\n");
568
+ return ipc::buff_t{buf, msg_size}; // no recycle
569
+ } else {
570
+ return ipc::buff_t{buf, msg_size, [](void* p_info, std::size_t size) {
571
+ auto r_info = static_cast<recycle_t *>(p_info);
572
+ IPC_UNUSED_ auto finally = ipc::guard([r_info] {
573
+ ipc::mem::free(r_info);
574
+ });
575
+ recycle_storage<flag_t>(r_info->storage_id, size, r_info->curr_conns, r_info->conn_id);
576
+ }, r_info};
577
+ }
578
+ } else {
579
+ ipc::log("fail: shm::handle for large message. msg_id: %zd, buf_id: %zd, size: %zd\n", msg.id_, buf_id, msg_size);
580
+ continue;
581
+ }
582
+ }
583
+ // find cache with msg.id_
584
+ auto cac_it = rc.find(msg.id_);
585
+ if (cac_it == rc.end()) {
586
+ if (msg_size <= ipc::data_length) {
587
+ return make_cache(msg.data_, msg_size);
588
+ }
589
+ // gc
590
+ if (rc.size() > 1024) {
591
+ std::vector<msg_id_t> need_del;
592
+ for (auto const & pair : rc) {
593
+ auto cmp = std::minmax(msg.id_, pair.first);
594
+ if (cmp.second - cmp.first > 8192) {
595
+ need_del.push_back(pair.first);
596
+ }
597
+ }
598
+ for (auto id : need_del) rc.erase(id);
599
+ }
600
+ // cache the first message fragment
601
+ rc.emplace(msg.id_, cache_t { ipc::data_length, make_cache(msg.data_, msg_size) });
602
+ }
603
+ // has cached before this message
604
+ else {
605
+ auto& cac = cac_it->second;
606
+ // this is the last message fragment
607
+ if (msg.remain_ <= 0) {
608
+ cac.append(&(msg.data_), msg_size);
609
+ // finish this message, erase it from cache
610
+ auto buff = std::move(cac.buff_);
611
+ rc.erase(cac_it);
612
+ return buff;
613
+ }
614
+ // there are remain datas after this message
615
+ cac.append(&(msg.data_), ipc::data_length);
616
+ }
617
+ }
618
+ }
619
+
620
+ static ipc::buff_t try_recv(ipc::handle_t h) {
621
+ return recv(h, 0);
622
+ }
623
+
624
+ }; // detail_impl<Policy>
625
+
626
+ template <typename Flag>
627
+ using policy_t = ipc::policy::choose<ipc::circ::elem_array, Flag>;
628
+
629
+ } // internal-linkage
630
+
631
+ namespace ipc {
632
+
633
+ template <typename Flag>
634
+ ipc::handle_t chan_impl<Flag>::inited() {
635
+ ipc::detail::waiter::init();
636
+ return nullptr;
637
+ }
638
+
639
+ template <typename Flag>
640
+ bool chan_impl<Flag>::connect(ipc::handle_t * ph, char const * name, unsigned mode) {
641
+ return detail_impl<policy_t<Flag>>::connect(ph, name, mode & receiver);
642
+ }
643
+
644
+ template <typename Flag>
645
+ bool chan_impl<Flag>::reconnect(ipc::handle_t * ph, unsigned mode) {
646
+ return detail_impl<policy_t<Flag>>::reconnect(ph, mode & receiver);
647
+ }
648
+
649
+ template <typename Flag>
650
+ void chan_impl<Flag>::disconnect(ipc::handle_t h) {
651
+ detail_impl<policy_t<Flag>>::disconnect(h);
652
+ }
653
+
654
+ template <typename Flag>
655
+ void chan_impl<Flag>::destroy(ipc::handle_t h) {
656
+ detail_impl<policy_t<Flag>>::destroy(h);
657
+ }
658
+
659
+ template <typename Flag>
660
+ char const * chan_impl<Flag>::name(ipc::handle_t h) {
661
+ auto info = detail_impl<policy_t<Flag>>::info_of(h);
662
+ return (info == nullptr) ? nullptr : info->name_.c_str();
663
+ }
664
+
665
+ template <typename Flag>
666
+ std::size_t chan_impl<Flag>::recv_count(ipc::handle_t h) {
667
+ return detail_impl<policy_t<Flag>>::recv_count(h);
668
+ }
669
+
670
+ template <typename Flag>
671
+ bool chan_impl<Flag>::wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
672
+ return detail_impl<policy_t<Flag>>::wait_for_recv(h, r_count, tm);
673
+ }
674
+
675
+ template <typename Flag>
676
+ bool chan_impl<Flag>::send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
677
+ return detail_impl<policy_t<Flag>>::send(h, data, size, tm);
678
+ }
679
+
680
+ template <typename Flag>
681
+ buff_t chan_impl<Flag>::recv(ipc::handle_t h, std::uint64_t tm) {
682
+ return detail_impl<policy_t<Flag>>::recv(h, tm);
683
+ }
684
+
685
+ template <typename Flag>
686
+ bool chan_impl<Flag>::try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
687
+ return detail_impl<policy_t<Flag>>::try_send(h, data, size, tm);
688
+ }
689
+
690
+ template <typename Flag>
691
+ buff_t chan_impl<Flag>::try_recv(ipc::handle_t h) {
692
+ return detail_impl<policy_t<Flag>>::try_recv(h);
693
+ }
694
+
695
+ template struct chan_impl<ipc::wr<relat::single, relat::single, trans::unicast >>;
696
+ // template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::unicast >>; // TBD
697
+ // template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::unicast >>; // TBD
698
+ template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::broadcast>>;
699
+ template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::broadcast>>;
700
+
701
+ } // namespace ipc
crazy_functions/test_project/cpp/cppipc/policy.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <type_traits>
4
+
5
+ #include "libipc/def.h"
6
+ #include "libipc/prod_cons.h"
7
+
8
+ #include "libipc/circ/elem_array.h"
9
+
10
+ namespace ipc {
11
+ namespace policy {
12
+
13
+ template <template <typename, std::size_t...> class Elems, typename Flag>
14
+ struct choose;
15
+
16
+ template <typename Flag>
17
+ struct choose<circ::elem_array, Flag> {
18
+ using flag_t = Flag;
19
+
20
+ template <std::size_t DataSize, std::size_t AlignSize>
21
+ using elems_t = circ::elem_array<ipc::prod_cons_impl<flag_t>, DataSize, AlignSize>;
22
+ };
23
+
24
+ } // namespace policy
25
+ } // namespace ipc
crazy_functions/test_project/cpp/cppipc/pool_alloc.cpp ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "libipc/pool_alloc.h"
2
+
3
+ #include "libipc/memory/resource.h"
4
+
5
+ namespace ipc {
6
+ namespace mem {
7
+
8
+ void* pool_alloc::alloc(std::size_t size) {
9
+ return async_pool_alloc::alloc(size);
10
+ }
11
+
12
+ void pool_alloc::free(void* p, std::size_t size) {
13
+ async_pool_alloc::free(p, size);
14
+ }
15
+
16
+ } // namespace mem
17
+ } // namespace ipc
crazy_functions/test_project/cpp/cppipc/prod_cons.h ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <atomic>
4
+ #include <utility>
5
+ #include <cstring>
6
+ #include <type_traits>
7
+ #include <cstdint>
8
+
9
+ #include "libipc/def.h"
10
+
11
+ #include "libipc/platform/detail.h"
12
+ #include "libipc/circ/elem_def.h"
13
+ #include "libipc/utility/log.h"
14
+ #include "libipc/utility/utility.h"
15
+
16
+ namespace ipc {
17
+
18
+ ////////////////////////////////////////////////////////////////
19
+ /// producer-consumer implementation
20
+ ////////////////////////////////////////////////////////////////
21
+
22
+ template <typename Flag>
23
+ struct prod_cons_impl;
24
+
25
+ template <>
26
+ struct prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
27
+
28
+ template <std::size_t DataSize, std::size_t AlignSize>
29
+ struct elem_t {
30
+ std::aligned_storage_t<DataSize, AlignSize> data_ {};
31
+ };
32
+
33
+ alignas(cache_line_size) std::atomic<circ::u2_t> rd_; // read index
34
+ alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
35
+
36
+ constexpr circ::u2_t cursor() const noexcept {
37
+ return 0;
38
+ }
39
+
40
+ template <typename W, typename F, typename E>
41
+ bool push(W* /*wrapper*/, F&& f, E* elems) {
42
+ auto cur_wt = circ::index_of(wt_.load(std::memory_order_relaxed));
43
+ if (cur_wt == circ::index_of(rd_.load(std::memory_order_acquire) - 1)) {
44
+ return false; // full
45
+ }
46
+ std::forward<F>(f)(&(elems[cur_wt].data_));
47
+ wt_.fetch_add(1, std::memory_order_release);
48
+ return true;
49
+ }
50
+
51
+ /**
52
+ * In single-single-unicast, 'force_push' means 'no reader' or 'the only one reader is dead'.
53
+ * So we could just disconnect all connections of receiver, and return false.
54
+ */
55
+ template <typename W, typename F, typename E>
56
+ bool force_push(W* wrapper, F&&, E*) {
57
+ wrapper->elems()->disconnect_receiver(~static_cast<circ::cc_t>(0u));
58
+ return false;
59
+ }
60
+
61
+ template <typename W, typename F, typename R, typename E>
62
+ bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E* elems) {
63
+ auto cur_rd = circ::index_of(rd_.load(std::memory_order_relaxed));
64
+ if (cur_rd == circ::index_of(wt_.load(std::memory_order_acquire))) {
65
+ return false; // empty
66
+ }
67
+ std::forward<F>(f)(&(elems[cur_rd].data_));
68
+ std::forward<R>(out)(true);
69
+ rd_.fetch_add(1, std::memory_order_release);
70
+ return true;
71
+ }
72
+ };
73
+
74
+ template <>
75
+ struct prod_cons_impl<wr<relat::single, relat::multi , trans::unicast>>
76
+ : prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
77
+
78
+ template <typename W, typename F, typename E>
79
+ bool force_push(W* wrapper, F&&, E*) {
80
+ wrapper->elems()->disconnect_receiver(1);
81
+ return false;
82
+ }
83
+
84
+ template <typename W, typename F, typename R,
85
+ template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
86
+ bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
87
+ byte_t buff[DS];
88
+ for (unsigned k = 0;;) {
89
+ auto cur_rd = rd_.load(std::memory_order_relaxed);
90
+ if (circ::index_of(cur_rd) ==
91
+ circ::index_of(wt_.load(std::memory_order_acquire))) {
92
+ return false; // empty
93
+ }
94
+ std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
95
+ if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
96
+ std::forward<F>(f)(buff);
97
+ std::forward<R>(out)(true);
98
+ return true;
99
+ }
100
+ ipc::yield(k);
101
+ }
102
+ }
103
+ };
104
+
105
+ template <>
106
+ struct prod_cons_impl<wr<relat::multi , relat::multi, trans::unicast>>
107
+ : prod_cons_impl<wr<relat::single, relat::multi, trans::unicast>> {
108
+
109
+ using flag_t = std::uint64_t;
110
+
111
+ template <std::size_t DataSize, std::size_t AlignSize>
112
+ struct elem_t {
113
+ std::aligned_storage_t<DataSize, AlignSize> data_ {};
114
+ std::atomic<flag_t> f_ct_ { 0 }; // commit flag
115
+ };
116
+
117
+ alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
118
+
119
+ template <typename W, typename F, typename E>
120
+ bool push(W* /*wrapper*/, F&& f, E* elems) {
121
+ circ::u2_t cur_ct, nxt_ct;
122
+ for (unsigned k = 0;;) {
123
+ cur_ct = ct_.load(std::memory_order_relaxed);
124
+ if (circ::index_of(nxt_ct = cur_ct + 1) ==
125
+ circ::index_of(rd_.load(std::memory_order_acquire))) {
126
+ return false; // full
127
+ }
128
+ if (ct_.compare_exchange_weak(cur_ct, nxt_ct, std::memory_order_acq_rel)) {
129
+ break;
130
+ }
131
+ ipc::yield(k);
132
+ }
133
+ auto* el = elems + circ::index_of(cur_ct);
134
+ std::forward<F>(f)(&(el->data_));
135
+ // set flag & try update wt
136
+ el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
137
+ while (1) {
138
+ auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
139
+ if (cur_ct != wt_.load(std::memory_order_relaxed)) {
140
+ return true;
141
+ }
142
+ if ((~cac_ct) != cur_ct) {
143
+ return true;
144
+ }
145
+ if (!el->f_ct_.compare_exchange_strong(cac_ct, 0, std::memory_order_relaxed)) {
146
+ return true;
147
+ }
148
+ wt_.store(nxt_ct, std::memory_order_release);
149
+ cur_ct = nxt_ct;
150
+ nxt_ct = cur_ct + 1;
151
+ el = elems + circ::index_of(cur_ct);
152
+ }
153
+ return true;
154
+ }
155
+
156
+ template <typename W, typename F, typename E>
157
+ bool force_push(W* wrapper, F&&, E*) {
158
+ wrapper->elems()->disconnect_receiver(1);
159
+ return false;
160
+ }
161
+
162
+ template <typename W, typename F, typename R,
163
+ template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
164
+ bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
165
+ byte_t buff[DS];
166
+ for (unsigned k = 0;;) {
167
+ auto cur_rd = rd_.load(std::memory_order_relaxed);
168
+ auto cur_wt = wt_.load(std::memory_order_acquire);
169
+ auto id_rd = circ::index_of(cur_rd);
170
+ auto id_wt = circ::index_of(cur_wt);
171
+ if (id_rd == id_wt) {
172
+ auto* el = elems + id_wt;
173
+ auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
174
+ if ((~cac_ct) != cur_wt) {
175
+ return false; // empty
176
+ }
177
+ if (el->f_ct_.compare_exchange_weak(cac_ct, 0, std::memory_order_relaxed)) {
178
+ wt_.store(cur_wt + 1, std::memory_order_release);
179
+ }
180
+ k = 0;
181
+ }
182
+ else {
183
+ std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
184
+ if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
185
+ std::forward<F>(f)(buff);
186
+ std::forward<R>(out)(true);
187
+ return true;
188
+ }
189
+ ipc::yield(k);
190
+ }
191
+ }
192
+ }
193
+ };
194
+
195
+ template <>
196
+ struct prod_cons_impl<wr<relat::single, relat::multi, trans::broadcast>> {
197
+
198
+ using rc_t = std::uint64_t;
199
+
200
+ enum : rc_t {
201
+ ep_mask = 0x00000000ffffffffull,
202
+ ep_incr = 0x0000000100000000ull
203
+ };
204
+
205
+ template <std::size_t DataSize, std::size_t AlignSize>
206
+ struct elem_t {
207
+ std::aligned_storage_t<DataSize, AlignSize> data_ {};
208
+ std::atomic<rc_t> rc_ { 0 }; // read-counter
209
+ };
210
+
211
+ alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
212
+ alignas(cache_line_size) rc_t epoch_ { 0 }; // only one writer
213
+
214
+ circ::u2_t cursor() const noexcept {
215
+ return wt_.load(std::memory_order_acquire);
216
+ }
217
+
218
+ template <typename W, typename F, typename E>
219
+ bool push(W* wrapper, F&& f, E* elems) {
220
+ E* el;
221
+ for (unsigned k = 0;;) {
222
+ circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
223
+ if (cc == 0) return false; // no reader
224
+ el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
225
+ // check all consumers have finished reading this element
226
+ auto cur_rc = el->rc_.load(std::memory_order_acquire);
227
+ circ::cc_t rem_cc = cur_rc & ep_mask;
228
+ if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch_)) {
229
+ return false; // has not finished yet
230
+ }
231
+ // consider rem_cc to be 0 here
232
+ if (el->rc_.compare_exchange_weak(
233
+ cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
234
+ break;
235
+ }
236
+ ipc::yield(k);
237
+ }
238
+ std::forward<F>(f)(&(el->data_));
239
+ wt_.fetch_add(1, std::memory_order_release);
240
+ return true;
241
+ }
242
+
243
+ template <typename W, typename F, typename E>
244
+ bool force_push(W* wrapper, F&& f, E* elems) {
245
+ E* el;
246
+ epoch_ += ep_incr;
247
+ for (unsigned k = 0;;) {
248
+ circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
249
+ if (cc == 0) return false; // no reader
250
+ el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
251
+ // check all consumers have finished reading this element
252
+ auto cur_rc = el->rc_.load(std::memory_order_acquire);
253
+ circ::cc_t rem_cc = cur_rc & ep_mask;
254
+ if (cc & rem_cc) {
255
+ ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
256
+ cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
257
+ if (cc == 0) return false; // no reader
258
+ }
259
+ // just compare & exchange
260
+ if (el->rc_.compare_exchange_weak(
261
+ cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
262
+ break;
263
+ }
264
+ ipc::yield(k);
265
+ }
266
+ std::forward<F>(f)(&(el->data_));
267
+ wt_.fetch_add(1, std::memory_order_release);
268
+ return true;
269
+ }
270
+
271
+ template <typename W, typename F, typename R, typename E>
272
+ bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E* elems) {
273
+ if (cur == cursor()) return false; // acquire
274
+ auto* el = elems + circ::index_of(cur++);
275
+ std::forward<F>(f)(&(el->data_));
276
+ for (unsigned k = 0;;) {
277
+ auto cur_rc = el->rc_.load(std::memory_order_acquire);
278
+ if ((cur_rc & ep_mask) == 0) {
279
+ std::forward<R>(out)(true);
280
+ return true;
281
+ }
282
+ auto nxt_rc = cur_rc & ~static_cast<rc_t>(wrapper->connected_id());
283
+ if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
284
+ std::forward<R>(out)((nxt_rc & ep_mask) == 0);
285
+ return true;
286
+ }
287
+ ipc::yield(k);
288
+ }
289
+ }
290
+ };
291
+
292
+ template <>
293
+ struct prod_cons_impl<wr<relat::multi, relat::multi, trans::broadcast>> {
294
+
295
+ using rc_t = std::uint64_t;
296
+ using flag_t = std::uint64_t;
297
+
298
+ enum : rc_t {
299
+ rc_mask = 0x00000000ffffffffull,
300
+ ep_mask = 0x00ffffffffffffffull,
301
+ ep_incr = 0x0100000000000000ull,
302
+ ic_mask = 0xff000000ffffffffull,
303
+ ic_incr = 0x0000000100000000ull
304
+ };
305
+
306
+ template <std::size_t DataSize, std::size_t AlignSize>
307
+ struct elem_t {
308
+ std::aligned_storage_t<DataSize, AlignSize> data_ {};
309
+ std::atomic<rc_t > rc_ { 0 }; // read-counter
310
+ std::atomic<flag_t> f_ct_ { 0 }; // commit flag
311
+ };
312
+
313
+ alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
314
+ alignas(cache_line_size) std::atomic<rc_t> epoch_ { 0 };
315
+
316
+ circ::u2_t cursor() const noexcept {
317
+ return ct_.load(std::memory_order_acquire);
318
+ }
319
+
320
+ constexpr static rc_t inc_rc(rc_t rc) noexcept {
321
+ return (rc & ic_mask) | ((rc + ic_incr) & ~ic_mask);
322
+ }
323
+
324
+ constexpr static rc_t inc_mask(rc_t rc) noexcept {
325
+ return inc_rc(rc) & ~rc_mask;
326
+ }
327
+
328
+ template <typename W, typename F, typename E>
329
+ bool push(W* wrapper, F&& f, E* elems) {
330
+ E* el;
331
+ circ::u2_t cur_ct;
332
+ rc_t epoch = epoch_.load(std::memory_order_acquire);
333
+ for (unsigned k = 0;;) {
334
+ circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
335
+ if (cc == 0) return false; // no reader
336
+ el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
337
+ // check all consumers have finished reading this element
338
+ auto cur_rc = el->rc_.load(std::memory_order_relaxed);
339
+ circ::cc_t rem_cc = cur_rc & rc_mask;
340
+ if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch)) {
341
+ return false; // has not finished yet
342
+ }
343
+ else if (!rem_cc) {
344
+ auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
345
+ if ((cur_fl != cur_ct) && cur_fl) {
346
+ return false; // full
347
+ }
348
+ }
349
+ // consider rem_cc to be 0 here
350
+ if (el->rc_.compare_exchange_weak(
351
+ cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed) &&
352
+ epoch_.compare_exchange_weak(epoch, epoch, std::memory_order_acq_rel)) {
353
+ break;
354
+ }
355
+ ipc::yield(k);
356
+ }
357
+ // only one thread/process would touch here at one time
358
+ ct_.store(cur_ct + 1, std::memory_order_release);
359
+ std::forward<F>(f)(&(el->data_));
360
+ // set flag & try update wt
361
+ el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
362
+ return true;
363
+ }
364
+
365
+ template <typename W, typename F, typename E>
366
+ bool force_push(W* wrapper, F&& f, E* elems) {
367
+ E* el;
368
+ circ::u2_t cur_ct;
369
+ rc_t epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
370
+ for (unsigned k = 0;;) {
371
+ circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
372
+ if (cc == 0) return false; // no reader
373
+ el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
374
+ // check all consumers have finished reading this element
375
+ auto cur_rc = el->rc_.load(std::memory_order_acquire);
376
+ circ::cc_t rem_cc = cur_rc & rc_mask;
377
+ if (cc & rem_cc) {
378
+ ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
379
+ cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
380
+ if (cc == 0) return false; // no reader
381
+ }
382
+ // just compare & exchange
383
+ if (el->rc_.compare_exchange_weak(
384
+ cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed)) {
385
+ if (epoch == epoch_.load(std::memory_order_acquire)) {
386
+ break;
387
+ }
388
+ else if (push(wrapper, std::forward<F>(f), elems)) {
389
+ return true;
390
+ }
391
+ epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
392
+ }
393
+ ipc::yield(k);
394
+ }
395
+ // only one thread/process would touch here at one time
396
+ ct_.store(cur_ct + 1, std::memory_order_release);
397
+ std::forward<F>(f)(&(el->data_));
398
+ // set flag & try update wt
399
+ el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
400
+ return true;
401
+ }
402
+
403
+ template <typename W, typename F, typename R, typename E, std::size_t N>
404
+ bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E(& elems)[N]) {
405
+ auto* el = elems + circ::index_of(cur);
406
+ auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
407
+ if (cur_fl != ~static_cast<flag_t>(cur)) {
408
+ return false; // empty
409
+ }
410
+ ++cur;
411
+ std::forward<F>(f)(&(el->data_));
412
+ for (unsigned k = 0;;) {
413
+ auto cur_rc = el->rc_.load(std::memory_order_acquire);
414
+ if ((cur_rc & rc_mask) == 0) {
415
+ std::forward<R>(out)(true);
416
+ el->f_ct_.store(cur + N - 1, std::memory_order_release);
417
+ return true;
418
+ }
419
+ auto nxt_rc = inc_rc(cur_rc) & ~static_cast<rc_t>(wrapper->connected_id());
420
+ bool last_one = false;
421
+ if ((last_one = (nxt_rc & rc_mask) == 0)) {
422
+ el->f_ct_.store(cur + N - 1, std::memory_order_release);
423
+ }
424
+ if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
425
+ std::forward<R>(out)(last_one);
426
+ return true;
427
+ }
428
+ ipc::yield(k);
429
+ }
430
+ }
431
+ };
432
+
433
+ } // namespace ipc
crazy_functions/test_project/cpp/cppipc/queue.h ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <type_traits>
4
+ #include <new>
5
+ #include <utility> // [[since C++14]]: std::exchange
6
+ #include <algorithm>
7
+ #include <atomic>
8
+ #include <tuple>
9
+ #include <thread>
10
+ #include <chrono>
11
+ #include <string>
12
+ #include <cassert> // assert
13
+
14
+ #include "libipc/def.h"
15
+ #include "libipc/shm.h"
16
+ #include "libipc/rw_lock.h"
17
+
18
+ #include "libipc/utility/log.h"
19
+ #include "libipc/platform/detail.h"
20
+ #include "libipc/circ/elem_def.h"
21
+
22
+ namespace ipc {
23
+ namespace detail {
24
+
25
+ class queue_conn {
26
+ protected:
27
+ circ::cc_t connected_ = 0;
28
+ shm::handle elems_h_;
29
+
30
+ template <typename Elems>
31
+ Elems* open(char const * name) {
32
+ if (name == nullptr || name[0] == '\0') {
33
+ ipc::error("fail open waiter: name is empty!\n");
34
+ return nullptr;
35
+ }
36
+ if (!elems_h_.acquire(name, sizeof(Elems))) {
37
+ return nullptr;
38
+ }
39
+ auto elems = static_cast<Elems*>(elems_h_.get());
40
+ if (elems == nullptr) {
41
+ ipc::error("fail acquire elems: %s\n", name);
42
+ return nullptr;
43
+ }
44
+ elems->init();
45
+ return elems;
46
+ }
47
+
48
+ void close() {
49
+ elems_h_.release();
50
+ }
51
+
52
+ public:
53
+ queue_conn() = default;
54
+ queue_conn(const queue_conn&) = delete;
55
+ queue_conn& operator=(const queue_conn&) = delete;
56
+
57
+ bool connected() const noexcept {
58
+ return connected_ != 0;
59
+ }
60
+
61
+ circ::cc_t connected_id() const noexcept {
62
+ return connected_;
63
+ }
64
+
65
+ template <typename Elems>
66
+ auto connect(Elems* elems) noexcept
67
+ /*needs 'optional' here*/
68
+ -> std::tuple<bool, bool, decltype(std::declval<Elems>().cursor())> {
69
+ if (elems == nullptr) return {};
70
+ // if it's already connected, just return
71
+ if (connected()) return {connected(), false, 0};
72
+ connected_ = elems->connect_receiver();
73
+ return {connected(), true, elems->cursor()};
74
+ }
75
+
76
+ template <typename Elems>
77
+ bool disconnect(Elems* elems) noexcept {
78
+ if (elems == nullptr) return false;
79
+ // if it's already disconnected, just return false
80
+ if (!connected()) return false;
81
+ elems->disconnect_receiver(std::exchange(connected_, 0));
82
+ return true;
83
+ }
84
+ };
85
+
86
+ template <typename Elems>
87
+ class queue_base : public queue_conn {
88
+ using base_t = queue_conn;
89
+
90
+ public:
91
+ using elems_t = Elems;
92
+ using policy_t = typename elems_t::policy_t;
93
+
94
+ protected:
95
+ elems_t * elems_ = nullptr;
96
+ decltype(std::declval<elems_t>().cursor()) cursor_ = 0;
97
+ bool sender_flag_ = false;
98
+
99
+ public:
100
+ using base_t::base_t;
101
+
102
+ queue_base() = default;
103
+
104
+ explicit queue_base(char const * name)
105
+ : queue_base{} {
106
+ elems_ = open<elems_t>(name);
107
+ }
108
+
109
+ explicit queue_base(elems_t * elems) noexcept
110
+ : queue_base{} {
111
+ assert(elems != nullptr);
112
+ elems_ = elems;
113
+ }
114
+
115
+ /* not virtual */ ~queue_base() {
116
+ base_t::close();
117
+ }
118
+
119
+ elems_t * elems() noexcept { return elems_; }
120
+ elems_t const * elems() const noexcept { return elems_; }
121
+
122
+ bool ready_sending() noexcept {
123
+ if (elems_ == nullptr) return false;
124
+ return sender_flag_ || (sender_flag_ = elems_->connect_sender());
125
+ }
126
+
127
+ void shut_sending() noexcept {
128
+ if (elems_ == nullptr) return;
129
+ if (!sender_flag_) return;
130
+ elems_->disconnect_sender();
131
+ }
132
+
133
+ bool connect() noexcept {
134
+ auto tp = base_t::connect(elems_);
135
+ if (std::get<0>(tp) && std::get<1>(tp)) {
136
+ cursor_ = std::get<2>(tp);
137
+ return true;
138
+ }
139
+ return std::get<0>(tp);
140
+ }
141
+
142
+ bool disconnect() noexcept {
143
+ return base_t::disconnect(elems_);
144
+ }
145
+
146
+ std::size_t conn_count() const noexcept {
147
+ return (elems_ == nullptr) ? static_cast<std::size_t>(invalid_value) : elems_->conn_count();
148
+ }
149
+
150
+ bool valid() const noexcept {
151
+ return elems_ != nullptr;
152
+ }
153
+
154
+ bool empty() const noexcept {
155
+ return !valid() || (cursor_ == elems_->cursor());
156
+ }
157
+
158
+ template <typename T, typename F, typename... P>
159
+ bool push(F&& prep, P&&... params) {
160
+ if (elems_ == nullptr) return false;
161
+ return elems_->push(this, [&](void* p) {
162
+ if (prep(p)) ::new (p) T(std::forward<P>(params)...);
163
+ });
164
+ }
165
+
166
+ template <typename T, typename F, typename... P>
167
+ bool force_push(F&& prep, P&&... params) {
168
+ if (elems_ == nullptr) return false;
169
+ return elems_->force_push(this, [&](void* p) {
170
+ if (prep(p)) ::new (p) T(std::forward<P>(params)...);
171
+ });
172
+ }
173
+
174
+ template <typename T, typename F>
175
+ bool pop(T& item, F&& out) {
176
+ if (elems_ == nullptr) {
177
+ return false;
178
+ }
179
+ return elems_->pop(this, &(this->cursor_), [&item](void* p) {
180
+ ::new (&item) T(std::move(*static_cast<T*>(p)));
181
+ }, std::forward<F>(out));
182
+ }
183
+ };
184
+
185
+ } // namespace detail
186
+
187
+ template <typename T, typename Policy>
188
+ class queue final : public detail::queue_base<typename Policy::template elems_t<sizeof(T), alignof(T)>> {
189
+ using base_t = detail::queue_base<typename Policy::template elems_t<sizeof(T), alignof(T)>>;
190
+
191
+ public:
192
+ using value_t = T;
193
+
194
+ using base_t::base_t;
195
+
196
+ template <typename... P>
197
+ bool push(P&&... params) {
198
+ return base_t::template push<T>(std::forward<P>(params)...);
199
+ }
200
+
201
+ template <typename... P>
202
+ bool force_push(P&&... params) {
203
+ return base_t::template force_push<T>(std::forward<P>(params)...);
204
+ }
205
+
206
+ bool pop(T& item) {
207
+ return base_t::pop(item, [](bool) {});
208
+ }
209
+
210
+ template <typename F>
211
+ bool pop(T& item, F&& out) {
212
+ return base_t::pop(item, std::forward<F>(out));
213
+ }
214
+ };
215
+
216
+ } // namespace ipc
crazy_functions/test_project/cpp/cppipc/shm.cpp ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #include <string>
3
+ #include <utility>
4
+
5
+ #include "libipc/shm.h"
6
+
7
+ #include "libipc/utility/pimpl.h"
8
+ #include "libipc/memory/resource.h"
9
+
10
+ namespace ipc {
11
+ namespace shm {
12
+
13
+ class handle::handle_ : public pimpl<handle_> {
14
+ public:
15
+ shm::id_t id_ = nullptr;
16
+ void* m_ = nullptr;
17
+
18
+ ipc::string n_;
19
+ std::size_t s_ = 0;
20
+ };
21
+
22
+ handle::handle()
23
+ : p_(p_->make()) {
24
+ }
25
+
26
+ handle::handle(char const * name, std::size_t size, unsigned mode)
27
+ : handle() {
28
+ acquire(name, size, mode);
29
+ }
30
+
31
+ handle::handle(handle&& rhs)
32
+ : handle() {
33
+ swap(rhs);
34
+ }
35
+
36
+ handle::~handle() {
37
+ release();
38
+ p_->clear();
39
+ }
40
+
41
+ void handle::swap(handle& rhs) {
42
+ std::swap(p_, rhs.p_);
43
+ }
44
+
45
+ handle& handle::operator=(handle rhs) {
46
+ swap(rhs);
47
+ return *this;
48
+ }
49
+
50
+ bool handle::valid() const noexcept {
51
+ return impl(p_)->m_ != nullptr;
52
+ }
53
+
54
+ std::size_t handle::size() const noexcept {
55
+ return impl(p_)->s_;
56
+ }
57
+
58
+ char const * handle::name() const noexcept {
59
+ return impl(p_)->n_.c_str();
60
+ }
61
+
62
+ std::int32_t handle::ref() const noexcept {
63
+ return shm::get_ref(impl(p_)->id_);
64
+ }
65
+
66
+ void handle::sub_ref() noexcept {
67
+ shm::sub_ref(impl(p_)->id_);
68
+ }
69
+
70
+ bool handle::acquire(char const * name, std::size_t size, unsigned mode) {
71
+ release();
72
+ impl(p_)->id_ = shm::acquire((impl(p_)->n_ = name).c_str(), size, mode);
73
+ impl(p_)->m_ = shm::get_mem(impl(p_)->id_, &(impl(p_)->s_));
74
+ return valid();
75
+ }
76
+
77
+ std::int32_t handle::release() {
78
+ if (impl(p_)->id_ == nullptr) return -1;
79
+ return shm::release(detach());
80
+ }
81
+
82
+ void* handle::get() const {
83
+ return impl(p_)->m_;
84
+ }
85
+
86
+ void handle::attach(id_t id) {
87
+ if (id == nullptr) return;
88
+ release();
89
+ impl(p_)->id_ = id;
90
+ impl(p_)->m_ = shm::get_mem(impl(p_)->id_, &(impl(p_)->s_));
91
+ }
92
+
93
+ id_t handle::detach() {
94
+ auto old = impl(p_)->id_;
95
+ impl(p_)->id_ = nullptr;
96
+ impl(p_)->m_ = nullptr;
97
+ impl(p_)->s_ = 0;
98
+ impl(p_)->n_.clear();
99
+ return old;
100
+ }
101
+
102
+ } // namespace shm
103
+ } // namespace ipc
crazy_functions/test_project/cpp/cppipc/waiter.h ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <utility>
4
+ #include <string>
5
+ #include <mutex>
6
+ #include <atomic>
7
+
8
+ #include "libipc/def.h"
9
+ #include "libipc/mutex.h"
10
+ #include "libipc/condition.h"
11
+ #include "libipc/platform/detail.h"
12
+
13
+ namespace ipc {
14
+ namespace detail {
15
+
16
+ class waiter {
17
+ ipc::sync::condition cond_;
18
+ ipc::sync::mutex lock_;
19
+ std::atomic<bool> quit_ {false};
20
+
21
+ public:
22
+ static void init();
23
+
24
+ waiter() = default;
25
+ waiter(char const *name) {
26
+ open(name);
27
+ }
28
+
29
+ ~waiter() {
30
+ close();
31
+ }
32
+
33
+ bool valid() const noexcept {
34
+ return cond_.valid() && lock_.valid();
35
+ }
36
+
37
+ bool open(char const *name) noexcept {
38
+ quit_.store(false, std::memory_order_relaxed);
39
+ if (!cond_.open((std::string{"_waiter_cond_"} + name).c_str())) {
40
+ return false;
41
+ }
42
+ if (!lock_.open((std::string{"_waiter_lock_"} + name).c_str())) {
43
+ cond_.close();
44
+ return false;
45
+ }
46
+ return valid();
47
+ }
48
+
49
+ void close() noexcept {
50
+ cond_.close();
51
+ lock_.close();
52
+ }
53
+
54
+ template <typename F>
55
+ bool wait_if(F &&pred, std::uint64_t tm = ipc::invalid_value) noexcept {
56
+ IPC_UNUSED_ std::lock_guard<ipc::sync::mutex> guard {lock_};
57
+ while ([this, &pred] {
58
+ return !quit_.load(std::memory_order_relaxed)
59
+ && std::forward<F>(pred)();
60
+ }()) {
61
+ if (!cond_.wait(lock_, tm)) return false;
62
+ }
63
+ return true;
64
+ }
65
+
66
+ bool notify() noexcept {
67
+ std::lock_guard<ipc::sync::mutex>{lock_}; // barrier
68
+ return cond_.notify(lock_);
69
+ }
70
+
71
+ bool broadcast() noexcept {
72
+ std::lock_guard<ipc::sync::mutex>{lock_}; // barrier
73
+ return cond_.broadcast(lock_);
74
+ }
75
+
76
+ bool quit_waiting() {
77
+ quit_.store(true, std::memory_order_release);
78
+ return broadcast();
79
+ }
80
+ };
81
+
82
+ } // namespace detail
83
+ } // namespace ipc
crazy_functions/test_project/cpp/cppipc/来源 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ https://github.com/mutouyun/cpp-ipc
2
+
3
+ A high-performance inter-process communication library using shared memory on Linux/Windows.
crazy_functions/test_project/cpp/libJPG/JpegLibrary.tps ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="utf-8"?>
2
+ <TpsData xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
3
+ <Name>Jpeg Library</Name>
4
+ <Location>/Engine/Source/ThirdParty/libJPG/</Location>
5
+ <Date>2016-06-10T14:04:17.9005402-04:00</Date>
6
+ <Function>We need it because it is a 3rd party lib in GFx</Function>
7
+ <Justification />
8
+ <Eula> See license in download: http://www.ijg.org/</Eula>
9
+ <RedistributeTo>
10
+ <EndUserGroup>Licensees</EndUserGroup>
11
+ <EndUserGroup>Git</EndUserGroup>
12
+ <EndUserGroup>P4</EndUserGroup>
13
+ </RedistributeTo>
14
+ <LicenseFolder>/Engine/Source/ThirdParty/Licenses/JPEG_License.txt</LicenseFolder>
15
+ </TpsData>
crazy_functions/test_project/cpp/libJPG/UElibJPG.Build.cs ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright Epic Games, Inc. All Rights Reserved.
2
+
3
+ using UnrealBuildTool;
4
+
5
+ public class UElibJPG : ModuleRules
6
+ {
7
+ public UElibJPG(ReadOnlyTargetRules Target) : base(Target)
8
+ {
9
+ Type = ModuleType.External;
10
+
11
+ string libJPGPath = Target.UEThirdPartySourceDirectory + "libJPG";
12
+ PublicIncludePaths.Add(libJPGPath);
13
+
14
+ ShadowVariableWarningLevel = WarningLevel.Off;
15
+ }
16
+ }
17
+
crazy_functions/test_project/cpp/libJPG/jpeg-compressor.tps ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="utf-8"?>
2
+ <TpsData xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
3
+ <Name>jpeg-compressor</Name>
4
+ <Location>/Engine/Source/ThirdParty/libJPG/</Location>
5
+ <Date>2016-06-10T14:07:13.8351319-04:00</Date>
6
+ <Function>Allows JPEG compression and decompression.</Function>
7
+ <Justification>Compressing video frames at runtime for reduced memory usage. Decompression to access the data afterwards.</Justification>
8
+ <Eula>https://code.google.com/archive/p/jpeg-compressor/</Eula>
9
+ <RedistributeTo>
10
+ <EndUserGroup>Licensees</EndUserGroup>
11
+ <EndUserGroup>Git</EndUserGroup>
12
+ <EndUserGroup>P4</EndUserGroup>
13
+ </RedistributeTo>
14
+ <LicenseFolder>None</LicenseFolder>
15
+ </TpsData>
crazy_functions/test_project/cpp/libJPG/jpgd.cpp ADDED
@@ -0,0 +1,3276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // jpgd.cpp - C++ class for JPEG decompression.
2
+ // Public domain, Rich Geldreich <richgel99@gmail.com>
3
+ // Last updated Apr. 16, 2011
4
+ // Alex Evans: Linear memory allocator (taken from jpge.h).
5
+ //
6
+ // Supports progressive and baseline sequential JPEG image files, and the most common chroma subsampling factors: Y, H1V1, H2V1, H1V2, and H2V2.
7
+ //
8
+ // Chroma upsampling quality: H2V2 is upsampled in the frequency domain, H2V1 and H1V2 are upsampled using point sampling.
9
+ // Chroma upsampling reference: "Fast Scheme for Image Size Change in the Compressed Domain"
10
+ // http://vision.ai.uiuc.edu/~dugad/research/dct/index.html
11
+
12
+ #include "jpgd.h"
13
+ #include <string.h>
14
+
15
+ #include <assert.h>
16
+ // BEGIN EPIC MOD
17
+ #define JPGD_ASSERT(x) { assert(x); CA_ASSUME(x); } (void)0
18
+ // END EPIC MOD
19
+
20
+ #ifdef _MSC_VER
21
+ #pragma warning (disable : 4611) // warning C4611: interaction between '_setjmp' and C++ object destruction is non-portable
22
+ #endif
23
+
24
+ // Set to 1 to enable freq. domain chroma upsampling on images using H2V2 subsampling (0=faster nearest neighbor sampling).
25
+ // This is slower, but results in higher quality on images with highly saturated colors.
26
+ #define JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING 1
27
+
28
+ #define JPGD_TRUE (1)
29
+ #define JPGD_FALSE (0)
30
+
31
+ #define JPGD_MAX(a,b) (((a)>(b)) ? (a) : (b))
32
+ #define JPGD_MIN(a,b) (((a)<(b)) ? (a) : (b))
33
+
34
+ namespace jpgd {
35
+
36
+ static inline void *jpgd_malloc(size_t nSize) { return FMemory::Malloc(nSize); }
37
+ static inline void jpgd_free(void *p) { FMemory::Free(p); }
38
+
39
+ // BEGIN EPIC MOD
40
+ //@UE3 - use UE3 BGRA encoding instead of assuming RGBA
41
+ // stolen from IImageWrapper.h
42
+ enum ERGBFormatJPG
43
+ {
44
+ Invalid = -1,
45
+ RGBA = 0,
46
+ BGRA = 1,
47
+ Gray = 2,
48
+ };
49
+ static ERGBFormatJPG jpg_format;
50
+ // END EPIC MOD
51
+
52
+ // DCT coefficients are stored in this sequence.
53
+ static int g_ZAG[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 };
54
+
55
+ enum JPEG_MARKER
56
+ {
57
+ M_SOF0 = 0xC0, M_SOF1 = 0xC1, M_SOF2 = 0xC2, M_SOF3 = 0xC3, M_SOF5 = 0xC5, M_SOF6 = 0xC6, M_SOF7 = 0xC7, M_JPG = 0xC8,
58
+ M_SOF9 = 0xC9, M_SOF10 = 0xCA, M_SOF11 = 0xCB, M_SOF13 = 0xCD, M_SOF14 = 0xCE, M_SOF15 = 0xCF, M_DHT = 0xC4, M_DAC = 0xCC,
59
+ M_RST0 = 0xD0, M_RST1 = 0xD1, M_RST2 = 0xD2, M_RST3 = 0xD3, M_RST4 = 0xD4, M_RST5 = 0xD5, M_RST6 = 0xD6, M_RST7 = 0xD7,
60
+ M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_DNL = 0xDC, M_DRI = 0xDD, M_DHP = 0xDE, M_EXP = 0xDF,
61
+ M_APP0 = 0xE0, M_APP15 = 0xEF, M_JPG0 = 0xF0, M_JPG13 = 0xFD, M_COM = 0xFE, M_TEM = 0x01, M_ERROR = 0x100, RST0 = 0xD0
62
+ };
63
+
64
+ enum JPEG_SUBSAMPLING { JPGD_GRAYSCALE = 0, JPGD_YH1V1, JPGD_YH2V1, JPGD_YH1V2, JPGD_YH2V2 };
65
+
66
+ #define CONST_BITS 13
67
+ #define PASS1_BITS 2
68
+ #define SCALEDONE ((int32)1)
69
+
70
+ #define FIX_0_298631336 ((int32)2446) /* FIX(0.298631336) */
71
+ #define FIX_0_390180644 ((int32)3196) /* FIX(0.390180644) */
72
+ #define FIX_0_541196100 ((int32)4433) /* FIX(0.541196100) */
73
+ #define FIX_0_765366865 ((int32)6270) /* FIX(0.765366865) */
74
+ #define FIX_0_899976223 ((int32)7373) /* FIX(0.899976223) */
75
+ #define FIX_1_175875602 ((int32)9633) /* FIX(1.175875602) */
76
+ #define FIX_1_501321110 ((int32)12299) /* FIX(1.501321110) */
77
+ #define FIX_1_847759065 ((int32)15137) /* FIX(1.847759065) */
78
+ #define FIX_1_961570560 ((int32)16069) /* FIX(1.961570560) */
79
+ #define FIX_2_053119869 ((int32)16819) /* FIX(2.053119869) */
80
+ #define FIX_2_562915447 ((int32)20995) /* FIX(2.562915447) */
81
+ #define FIX_3_072711026 ((int32)25172) /* FIX(3.072711026) */
82
+
83
+ #define DESCALE(x,n) (((x) + (SCALEDONE << ((n)-1))) >> (n))
84
+ #define DESCALE_ZEROSHIFT(x,n) (((x) + (128 << (n)) + (SCALEDONE << ((n)-1))) >> (n))
85
+
86
+ #define MULTIPLY(var, cnst) ((var) * (cnst))
87
+
88
+ #define CLAMP(i) ((static_cast<uint>(i) > 255) ? (((~i) >> 31) & 0xFF) : (i))
89
+
90
+ // Compiler creates a fast path 1D IDCT for X non-zero columns
91
+ template <int NONZERO_COLS>
92
+ struct Row
93
+ {
94
+ static void idct(int* pTemp, const jpgd_block_t* pSrc)
95
+ {
96
+ // ACCESS_COL() will be optimized at compile time to either an array access, or 0.
97
+ #define ACCESS_COL(x) (((x) < NONZERO_COLS) ? (int)pSrc[x] : 0)
98
+
99
+ const int z2 = ACCESS_COL(2), z3 = ACCESS_COL(6);
100
+
101
+ const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
102
+ const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
103
+ const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
104
+
105
+ const int tmp0 = (ACCESS_COL(0) + ACCESS_COL(4)) << CONST_BITS;
106
+ const int tmp1 = (ACCESS_COL(0) - ACCESS_COL(4)) << CONST_BITS;
107
+
108
+ const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2;
109
+
110
+ const int atmp0 = ACCESS_COL(7), atmp1 = ACCESS_COL(5), atmp2 = ACCESS_COL(3), atmp3 = ACCESS_COL(1);
111
+
112
+ const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3;
113
+ const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602);
114
+
115
+ const int az1 = MULTIPLY(bz1, - FIX_0_899976223);
116
+ const int az2 = MULTIPLY(bz2, - FIX_2_562915447);
117
+ const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5;
118
+ const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5;
119
+
120
+ const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3;
121
+ const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4;
122
+ const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3;
123
+ const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4;
124
+
125
+ pTemp[0] = DESCALE(tmp10 + btmp3, CONST_BITS-PASS1_BITS);
126
+ pTemp[7] = DESCALE(tmp10 - btmp3, CONST_BITS-PASS1_BITS);
127
+ pTemp[1] = DESCALE(tmp11 + btmp2, CONST_BITS-PASS1_BITS);
128
+ pTemp[6] = DESCALE(tmp11 - btmp2, CONST_BITS-PASS1_BITS);
129
+ pTemp[2] = DESCALE(tmp12 + btmp1, CONST_BITS-PASS1_BITS);
130
+ pTemp[5] = DESCALE(tmp12 - btmp1, CONST_BITS-PASS1_BITS);
131
+ pTemp[3] = DESCALE(tmp13 + btmp0, CONST_BITS-PASS1_BITS);
132
+ pTemp[4] = DESCALE(tmp13 - btmp0, CONST_BITS-PASS1_BITS);
133
+ }
134
+ };
135
+
136
+ template <>
137
+ struct Row<0>
138
+ {
139
+ static void idct(int* pTemp, const jpgd_block_t* pSrc)
140
+ {
141
+ #ifdef _MSC_VER
142
+ pTemp; pSrc;
143
+ #endif
144
+ }
145
+ };
146
+
147
+ template <>
148
+ struct Row<1>
149
+ {
150
+ static void idct(int* pTemp, const jpgd_block_t* pSrc)
151
+ {
152
+ const int dcval = (pSrc[0] << PASS1_BITS);
153
+
154
+ pTemp[0] = dcval;
155
+ pTemp[1] = dcval;
156
+ pTemp[2] = dcval;
157
+ pTemp[3] = dcval;
158
+ pTemp[4] = dcval;
159
+ pTemp[5] = dcval;
160
+ pTemp[6] = dcval;
161
+ pTemp[7] = dcval;
162
+ }
163
+ };
164
+
165
+ // Compiler creates a fast path 1D IDCT for X non-zero rows
166
+ template <int NONZERO_ROWS>
167
+ struct Col
168
+ {
169
+ static void idct(uint8* pDst_ptr, const int* pTemp)
170
+ {
171
+ // ACCESS_ROW() will be optimized at compile time to either an array access, or 0.
172
+ #define ACCESS_ROW(x) (((x) < NONZERO_ROWS) ? pTemp[x * 8] : 0)
173
+
174
+ const int z2 = ACCESS_ROW(2);
175
+ const int z3 = ACCESS_ROW(6);
176
+
177
+ const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
178
+ const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
179
+ const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
180
+
181
+ const int tmp0 = (ACCESS_ROW(0) + ACCESS_ROW(4)) << CONST_BITS;
182
+ const int tmp1 = (ACCESS_ROW(0) - ACCESS_ROW(4)) << CONST_BITS;
183
+
184
+ const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2;
185
+
186
+ const int atmp0 = ACCESS_ROW(7), atmp1 = ACCESS_ROW(5), atmp2 = ACCESS_ROW(3), atmp3 = ACCESS_ROW(1);
187
+
188
+ const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3;
189
+ const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602);
190
+
191
+ const int az1 = MULTIPLY(bz1, - FIX_0_899976223);
192
+ const int az2 = MULTIPLY(bz2, - FIX_2_562915447);
193
+ const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5;
194
+ const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5;
195
+
196
+ const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3;
197
+ const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4;
198
+ const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3;
199
+ const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4;
200
+
201
+ int i = DESCALE_ZEROSHIFT(tmp10 + btmp3, CONST_BITS+PASS1_BITS+3);
202
+ pDst_ptr[8*0] = (uint8)CLAMP(i);
203
+
204
+ i = DESCALE_ZEROSHIFT(tmp10 - btmp3, CONST_BITS+PASS1_BITS+3);
205
+ pDst_ptr[8*7] = (uint8)CLAMP(i);
206
+
207
+ i = DESCALE_ZEROSHIFT(tmp11 + btmp2, CONST_BITS+PASS1_BITS+3);
208
+ pDst_ptr[8*1] = (uint8)CLAMP(i);
209
+
210
+ i = DESCALE_ZEROSHIFT(tmp11 - btmp2, CONST_BITS+PASS1_BITS+3);
211
+ pDst_ptr[8*6] = (uint8)CLAMP(i);
212
+
213
+ i = DESCALE_ZEROSHIFT(tmp12 + btmp1, CONST_BITS+PASS1_BITS+3);
214
+ pDst_ptr[8*2] = (uint8)CLAMP(i);
215
+
216
+ i = DESCALE_ZEROSHIFT(tmp12 - btmp1, CONST_BITS+PASS1_BITS+3);
217
+ pDst_ptr[8*5] = (uint8)CLAMP(i);
218
+
219
+ i = DESCALE_ZEROSHIFT(tmp13 + btmp0, CONST_BITS+PASS1_BITS+3);
220
+ pDst_ptr[8*3] = (uint8)CLAMP(i);
221
+
222
+ i = DESCALE_ZEROSHIFT(tmp13 - btmp0, CONST_BITS+PASS1_BITS+3);
223
+ pDst_ptr[8*4] = (uint8)CLAMP(i);
224
+ }
225
+ };
226
+
227
+ template <>
228
+ struct Col<1>
229
+ {
230
+ static void idct(uint8* pDst_ptr, const int* pTemp)
231
+ {
232
+ int dcval = DESCALE_ZEROSHIFT(pTemp[0], PASS1_BITS+3);
233
+ const uint8 dcval_clamped = (uint8)CLAMP(dcval);
234
+ pDst_ptr[0*8] = dcval_clamped;
235
+ pDst_ptr[1*8] = dcval_clamped;
236
+ pDst_ptr[2*8] = dcval_clamped;
237
+ pDst_ptr[3*8] = dcval_clamped;
238
+ pDst_ptr[4*8] = dcval_clamped;
239
+ pDst_ptr[5*8] = dcval_clamped;
240
+ pDst_ptr[6*8] = dcval_clamped;
241
+ pDst_ptr[7*8] = dcval_clamped;
242
+ }
243
+ };
244
+
245
+ static const uint8 s_idct_row_table[] =
246
+ {
247
+ 1,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0, 2,1,0,0,0,0,0,0, 2,1,1,0,0,0,0,0, 2,2,1,0,0,0,0,0, 3,2,1,0,0,0,0,0, 4,2,1,0,0,0,0,0, 4,3,1,0,0,0,0,0,
248
+ 4,3,2,0,0,0,0,0, 4,3,2,1,0,0,0,0, 4,3,2,1,1,0,0,0, 4,3,2,2,1,0,0,0, 4,3,3,2,1,0,0,0, 4,4,3,2,1,0,0,0, 5,4,3,2,1,0,0,0, 6,4,3,2,1,0,0,0,
249
+ 6,5,3,2,1,0,0,0, 6,5,4,2,1,0,0,0, 6,5,4,3,1,0,0,0, 6,5,4,3,2,0,0,0, 6,5,4,3,2,1,0,0, 6,5,4,3,2,1,1,0, 6,5,4,3,2,2,1,0, 6,5,4,3,3,2,1,0,
250
+ 6,5,4,4,3,2,1,0, 6,5,5,4,3,2,1,0, 6,6,5,4,3,2,1,0, 7,6,5,4,3,2,1,0, 8,6,5,4,3,2,1,0, 8,7,5,4,3,2,1,0, 8,7,6,4,3,2,1,0, 8,7,6,5,3,2,1,0,
251
+ 8,7,6,5,4,2,1,0, 8,7,6,5,4,3,1,0, 8,7,6,5,4,3,2,0, 8,7,6,5,4,3,2,1, 8,7,6,5,4,3,2,2, 8,7,6,5,4,3,3,2, 8,7,6,5,4,4,3,2, 8,7,6,5,5,4,3,2,
252
+ 8,7,6,6,5,4,3,2, 8,7,7,6,5,4,3,2, 8,8,7,6,5,4,3,2, 8,8,8,6,5,4,3,2, 8,8,8,7,5,4,3,2, 8,8,8,7,6,4,3,2, 8,8,8,7,6,5,3,2, 8,8,8,7,6,5,4,2,
253
+ 8,8,8,7,6,5,4,3, 8,8,8,7,6,5,4,4, 8,8,8,7,6,5,5,4, 8,8,8,7,6,6,5,4, 8,8,8,7,7,6,5,4, 8,8,8,8,7,6,5,4, 8,8,8,8,8,6,5,4, 8,8,8,8,8,7,5,4,
254
+ 8,8,8,8,8,7,6,4, 8,8,8,8,8,7,6,5, 8,8,8,8,8,7,6,6, 8,8,8,8,8,7,7,6, 8,8,8,8,8,8,7,6, 8,8,8,8,8,8,8,6, 8,8,8,8,8,8,8,7, 8,8,8,8,8,8,8,8,
255
+ };
256
+
257
+ static const uint8 s_idct_col_table[] = { 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 };
258
+
259
+ void idct(const jpgd_block_t* pSrc_ptr, uint8* pDst_ptr, int block_max_zag)
260
+ {
261
+ JPGD_ASSERT(block_max_zag >= 1);
262
+ JPGD_ASSERT(block_max_zag <= 64);
263
+
264
+ if (block_max_zag == 1)
265
+ {
266
+ int k = ((pSrc_ptr[0] + 4) >> 3) + 128;
267
+ k = CLAMP(k);
268
+ k = k | (k<<8);
269
+ k = k | (k<<16);
270
+
271
+ for (int i = 8; i > 0; i--)
272
+ {
273
+ *(int*)&pDst_ptr[0] = k;
274
+ *(int*)&pDst_ptr[4] = k;
275
+ pDst_ptr += 8;
276
+ }
277
+ return;
278
+ }
279
+
280
+ int temp[64];
281
+
282
+ const jpgd_block_t* pSrc = pSrc_ptr;
283
+ int* pTemp = temp;
284
+
285
+ const uint8* pRow_tab = &s_idct_row_table[(block_max_zag - 1) * 8];
286
+ int i;
287
+ for (i = 8; i > 0; i--, pRow_tab++)
288
+ {
289
+ switch (*pRow_tab)
290
+ {
291
+ case 0: Row<0>::idct(pTemp, pSrc); break;
292
+ case 1: Row<1>::idct(pTemp, pSrc); break;
293
+ case 2: Row<2>::idct(pTemp, pSrc); break;
294
+ case 3: Row<3>::idct(pTemp, pSrc); break;
295
+ case 4: Row<4>::idct(pTemp, pSrc); break;
296
+ case 5: Row<5>::idct(pTemp, pSrc); break;
297
+ case 6: Row<6>::idct(pTemp, pSrc); break;
298
+ case 7: Row<7>::idct(pTemp, pSrc); break;
299
+ case 8: Row<8>::idct(pTemp, pSrc); break;
300
+ }
301
+
302
+ pSrc += 8;
303
+ pTemp += 8;
304
+ }
305
+
306
+ pTemp = temp;
307
+
308
+ const int nonzero_rows = s_idct_col_table[block_max_zag - 1];
309
+ for (i = 8; i > 0; i--)
310
+ {
311
+ switch (nonzero_rows)
312
+ {
313
+ case 1: Col<1>::idct(pDst_ptr, pTemp); break;
314
+ case 2: Col<2>::idct(pDst_ptr, pTemp); break;
315
+ case 3: Col<3>::idct(pDst_ptr, pTemp); break;
316
+ case 4: Col<4>::idct(pDst_ptr, pTemp); break;
317
+ case 5: Col<5>::idct(pDst_ptr, pTemp); break;
318
+ case 6: Col<6>::idct(pDst_ptr, pTemp); break;
319
+ case 7: Col<7>::idct(pDst_ptr, pTemp); break;
320
+ case 8: Col<8>::idct(pDst_ptr, pTemp); break;
321
+ }
322
+
323
+ pTemp++;
324
+ pDst_ptr++;
325
+ }
326
+ }
327
+
328
+ void idct_4x4(const jpgd_block_t* pSrc_ptr, uint8* pDst_ptr)
329
+ {
330
+ int temp[64];
331
+ int* pTemp = temp;
332
+ const jpgd_block_t* pSrc = pSrc_ptr;
333
+
334
+ for (int i = 4; i > 0; i--)
335
+ {
336
+ Row<4>::idct(pTemp, pSrc);
337
+ pSrc += 8;
338
+ pTemp += 8;
339
+ }
340
+
341
+ pTemp = temp;
342
+ for (int i = 8; i > 0; i--)
343
+ {
344
+ Col<4>::idct(pDst_ptr, pTemp);
345
+ pTemp++;
346
+ pDst_ptr++;
347
+ }
348
+ }
349
+
350
+ // Retrieve one character from the input stream.
351
+ inline uint jpeg_decoder::get_char()
352
+ {
353
+ // Any bytes remaining in buffer?
354
+ if (!m_in_buf_left)
355
+ {
356
+ // Try to get more bytes.
357
+ prep_in_buffer();
358
+ // Still nothing to get?
359
+ if (!m_in_buf_left)
360
+ {
361
+ // Pad the end of the stream with 0xFF 0xD9 (EOI marker)
362
+ int t = m_tem_flag;
363
+ m_tem_flag ^= 1;
364
+ if (t)
365
+ return 0xD9;
366
+ else
367
+ return 0xFF;
368
+ }
369
+ }
370
+
371
+ uint c = *m_pIn_buf_ofs++;
372
+ m_in_buf_left--;
373
+
374
+ return c;
375
+ }
376
+
377
+ // Same as previous method, except can indicate if the character is a pad character or not.
378
+ inline uint jpeg_decoder::get_char(bool *pPadding_flag)
379
+ {
380
+ if (!m_in_buf_left)
381
+ {
382
+ prep_in_buffer();
383
+ if (!m_in_buf_left)
384
+ {
385
+ *pPadding_flag = true;
386
+ int t = m_tem_flag;
387
+ m_tem_flag ^= 1;
388
+ if (t)
389
+ return 0xD9;
390
+ else
391
+ return 0xFF;
392
+ }
393
+ }
394
+
395
+ *pPadding_flag = false;
396
+
397
+ uint c = *m_pIn_buf_ofs++;
398
+ m_in_buf_left--;
399
+
400
+ return c;
401
+ }
402
+
403
+ // Inserts a previously retrieved character back into the input buffer.
404
+ inline void jpeg_decoder::stuff_char(uint8 q)
405
+ {
406
+ *(--m_pIn_buf_ofs) = q;
407
+ m_in_buf_left++;
408
+ }
409
+
410
+ // Retrieves one character from the input stream, but does not read past markers. Will continue to return 0xFF when a marker is encountered.
411
+ inline uint8 jpeg_decoder::get_octet()
412
+ {
413
+ bool padding_flag;
414
+ int c = get_char(&padding_flag);
415
+
416
+ if (c == 0xFF)
417
+ {
418
+ if (padding_flag)
419
+ return 0xFF;
420
+
421
+ c = get_char(&padding_flag);
422
+ if (padding_flag)
423
+ {
424
+ stuff_char(0xFF);
425
+ return 0xFF;
426
+ }
427
+
428
+ if (c == 0x00)
429
+ return 0xFF;
430
+ else
431
+ {
432
+ stuff_char(static_cast<uint8>(c));
433
+ stuff_char(0xFF);
434
+ return 0xFF;
435
+ }
436
+ }
437
+
438
+ return static_cast<uint8>(c);
439
+ }
440
+
441
+ // Retrieves a variable number of bits from the input stream. Does not recognize markers.
442
+ inline uint jpeg_decoder::get_bits(int num_bits)
443
+ {
444
+ if (!num_bits)
445
+ return 0;
446
+
447
+ uint i = m_bit_buf >> (32 - num_bits);
448
+
449
+ if ((m_bits_left -= num_bits) <= 0)
450
+ {
451
+ m_bit_buf <<= (num_bits += m_bits_left);
452
+
453
+ uint c1 = get_char();
454
+ uint c2 = get_char();
455
+ m_bit_buf = (m_bit_buf & 0xFFFF0000) | (c1 << 8) | c2;
456
+
457
+ m_bit_buf <<= -m_bits_left;
458
+
459
+ m_bits_left += 16;
460
+
461
+ JPGD_ASSERT(m_bits_left >= 0);
462
+ }
463
+ else
464
+ m_bit_buf <<= num_bits;
465
+
466
+ return i;
467
+ }
468
+
469
+ // Retrieves a variable number of bits from the input stream. Markers will not be read into the input bit buffer. Instead, an infinite number of all 1's will be returned when a marker is encountered.
470
+ inline uint jpeg_decoder::get_bits_no_markers(int num_bits)
471
+ {
472
+ if (!num_bits)
473
+ return 0;
474
+
475
+ uint i = m_bit_buf >> (32 - num_bits);
476
+
477
+ if ((m_bits_left -= num_bits) <= 0)
478
+ {
479
+ m_bit_buf <<= (num_bits += m_bits_left);
480
+
481
+ if ((m_in_buf_left < 2) || (m_pIn_buf_ofs[0] == 0xFF) || (m_pIn_buf_ofs[1] == 0xFF))
482
+ {
483
+ uint c1 = get_octet();
484
+ uint c2 = get_octet();
485
+ m_bit_buf |= (c1 << 8) | c2;
486
+ }
487
+ else
488
+ {
489
+ m_bit_buf |= ((uint)m_pIn_buf_ofs[0] << 8) | m_pIn_buf_ofs[1];
490
+ m_in_buf_left -= 2;
491
+ m_pIn_buf_ofs += 2;
492
+ }
493
+
494
+ m_bit_buf <<= -m_bits_left;
495
+
496
+ m_bits_left += 16;
497
+
498
+ JPGD_ASSERT(m_bits_left >= 0);
499
+ }
500
+ else
501
+ m_bit_buf <<= num_bits;
502
+
503
+ return i;
504
+ }
505
+
506
+ // Decodes a Huffman encoded symbol.
507
+ inline int jpeg_decoder::huff_decode(huff_tables *pH)
508
+ {
509
+ int symbol;
510
+
511
+ // Check first 8-bits: do we have a complete symbol?
512
+ if ((symbol = pH->look_up[m_bit_buf >> 24]) < 0)
513
+ {
514
+ // Decode more bits, use a tree traversal to find symbol.
515
+ int ofs = 23;
516
+ do
517
+ {
518
+ symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))];
519
+ ofs--;
520
+ } while (symbol < 0);
521
+
522
+ get_bits_no_markers(8 + (23 - ofs));
523
+ }
524
+ else
525
+ get_bits_no_markers(pH->code_size[symbol]);
526
+
527
+ return symbol;
528
+ }
529
+
530
+ // Decodes a Huffman encoded symbol.
531
+ inline int jpeg_decoder::huff_decode(huff_tables *pH, int& extra_bits)
532
+ {
533
+ int symbol;
534
+
535
+ // Check first 8-bits: do we have a complete symbol?
536
+ if ((symbol = pH->look_up2[m_bit_buf >> 24]) < 0)
537
+ {
538
+ // Use a tree traversal to find symbol.
539
+ int ofs = 23;
540
+ do
541
+ {
542
+ symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))];
543
+ ofs--;
544
+ } while (symbol < 0);
545
+
546
+ get_bits_no_markers(8 + (23 - ofs));
547
+
548
+ extra_bits = get_bits_no_markers(symbol & 0xF);
549
+ }
550
+ else
551
+ {
552
+ JPGD_ASSERT(((symbol >> 8) & 31) == pH->code_size[symbol & 255] + ((symbol & 0x8000) ? (symbol & 15) : 0));
553
+
554
+ if (symbol & 0x8000)
555
+ {
556
+ get_bits_no_markers((symbol >> 8) & 31);
557
+ extra_bits = symbol >> 16;
558
+ }
559
+ else
560
+ {
561
+ int code_size = (symbol >> 8) & 31;
562
+ int num_extra_bits = symbol & 0xF;
563
+ int bits = code_size + num_extra_bits;
564
+ if (bits <= (m_bits_left + 16))
565
+ extra_bits = get_bits_no_markers(bits) & ((1 << num_extra_bits) - 1);
566
+ else
567
+ {
568
+ get_bits_no_markers(code_size);
569
+ extra_bits = get_bits_no_markers(num_extra_bits);
570
+ }
571
+ }
572
+
573
+ symbol &= 0xFF;
574
+ }
575
+
576
+ return symbol;
577
+ }
578
+
579
+ // Tables and macro used to fully decode the DPCM differences.
580
+ static const int s_extend_test[16] = { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
581
+ static const int s_extend_offset[16] = { 0, -1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, -4095, -8191, -16383, -32767 };
582
+ static const int s_extend_mask[] = { 0, (1<<0), (1<<1), (1<<2), (1<<3), (1<<4), (1<<5), (1<<6), (1<<7), (1<<8), (1<<9), (1<<10), (1<<11), (1<<12), (1<<13), (1<<14), (1<<15), (1<<16) };
583
+ #define HUFF_EXTEND(x,s) ((x) < s_extend_test[s] ? (x) + s_extend_offset[s] : (x))
584
+
585
+ // Clamps a value between 0-255.
586
+ inline uint8 jpeg_decoder::clamp(int i)
587
+ {
588
+ if (static_cast<uint>(i) > 255)
589
+ i = (((~i) >> 31) & 0xFF);
590
+
591
+ return static_cast<uint8>(i);
592
+ }
593
+
594
+ namespace DCT_Upsample
595
+ {
596
+ struct Matrix44
597
+ {
598
+ typedef int Element_Type;
599
+ enum { NUM_ROWS = 4, NUM_COLS = 4 };
600
+
601
+ Element_Type v[NUM_ROWS][NUM_COLS];
602
+
603
+ inline int rows() const { return NUM_ROWS; }
604
+ inline int cols() const { return NUM_COLS; }
605
+
606
+ inline const Element_Type & at(int r, int c) const { return v[r][c]; }
607
+ inline Element_Type & at(int r, int c) { return v[r][c]; }
608
+
609
+ inline Matrix44() { }
610
+
611
+ inline Matrix44& operator += (const Matrix44& a)
612
+ {
613
+ for (int r = 0; r < NUM_ROWS; r++)
614
+ {
615
+ at(r, 0) += a.at(r, 0);
616
+ at(r, 1) += a.at(r, 1);
617
+ at(r, 2) += a.at(r, 2);
618
+ at(r, 3) += a.at(r, 3);
619
+ }
620
+ return *this;
621
+ }
622
+
623
+ inline Matrix44& operator -= (const Matrix44& a)
624
+ {
625
+ for (int r = 0; r < NUM_ROWS; r++)
626
+ {
627
+ at(r, 0) -= a.at(r, 0);
628
+ at(r, 1) -= a.at(r, 1);
629
+ at(r, 2) -= a.at(r, 2);
630
+ at(r, 3) -= a.at(r, 3);
631
+ }
632
+ return *this;
633
+ }
634
+
635
+ friend inline Matrix44 operator + (const Matrix44& a, const Matrix44& b)
636
+ {
637
+ Matrix44 ret;
638
+ for (int r = 0; r < NUM_ROWS; r++)
639
+ {
640
+ ret.at(r, 0) = a.at(r, 0) + b.at(r, 0);
641
+ ret.at(r, 1) = a.at(r, 1) + b.at(r, 1);
642
+ ret.at(r, 2) = a.at(r, 2) + b.at(r, 2);
643
+ ret.at(r, 3) = a.at(r, 3) + b.at(r, 3);
644
+ }
645
+ return ret;
646
+ }
647
+
648
+ friend inline Matrix44 operator - (const Matrix44& a, const Matrix44& b)
649
+ {
650
+ Matrix44 ret;
651
+ for (int r = 0; r < NUM_ROWS; r++)
652
+ {
653
+ ret.at(r, 0) = a.at(r, 0) - b.at(r, 0);
654
+ ret.at(r, 1) = a.at(r, 1) - b.at(r, 1);
655
+ ret.at(r, 2) = a.at(r, 2) - b.at(r, 2);
656
+ ret.at(r, 3) = a.at(r, 3) - b.at(r, 3);
657
+ }
658
+ return ret;
659
+ }
660
+
661
+ static inline void add_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b)
662
+ {
663
+ for (int r = 0; r < 4; r++)
664
+ {
665
+ pDst[0*8 + r] = static_cast<jpgd_block_t>(a.at(r, 0) + b.at(r, 0));
666
+ pDst[1*8 + r] = static_cast<jpgd_block_t>(a.at(r, 1) + b.at(r, 1));
667
+ pDst[2*8 + r] = static_cast<jpgd_block_t>(a.at(r, 2) + b.at(r, 2));
668
+ pDst[3*8 + r] = static_cast<jpgd_block_t>(a.at(r, 3) + b.at(r, 3));
669
+ }
670
+ }
671
+
672
+ static inline void sub_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b)
673
+ {
674
+ for (int r = 0; r < 4; r++)
675
+ {
676
+ pDst[0*8 + r] = static_cast<jpgd_block_t>(a.at(r, 0) - b.at(r, 0));
677
+ pDst[1*8 + r] = static_cast<jpgd_block_t>(a.at(r, 1) - b.at(r, 1));
678
+ pDst[2*8 + r] = static_cast<jpgd_block_t>(a.at(r, 2) - b.at(r, 2));
679
+ pDst[3*8 + r] = static_cast<jpgd_block_t>(a.at(r, 3) - b.at(r, 3));
680
+ }
681
+ }
682
+ };
683
+
684
+ const int FRACT_BITS = 10;
685
+ const int SCALE = 1 << FRACT_BITS;
686
+
687
+ typedef int Temp_Type;
688
+ #define D(i) (((i) + (SCALE >> 1)) >> FRACT_BITS)
689
+ #define F(i) ((int)((i) * SCALE + .5f))
690
+
691
+ // Any decent C++ compiler will optimize this at compile time to a 0, or an array access.
692
+ #define AT(c, r) ((((c)>=NUM_COLS)||((r)>=NUM_ROWS)) ? 0 : pSrc[(c)+(r)*8])
693
+
694
+ // NUM_ROWS/NUM_COLS = # of non-zero rows/cols in input matrix
695
+ template<int NUM_ROWS, int NUM_COLS>
696
+ struct P_Q
697
+ {
698
+ static void calc(Matrix44& P, Matrix44& Q, const jpgd_block_t* pSrc)
699
+ {
700
+ // 4x8 = 4x8 times 8x8, matrix 0 is constant
701
+ const Temp_Type X000 = AT(0, 0);
702
+ const Temp_Type X001 = AT(0, 1);
703
+ const Temp_Type X002 = AT(0, 2);
704
+ const Temp_Type X003 = AT(0, 3);
705
+ const Temp_Type X004 = AT(0, 4);
706
+ const Temp_Type X005 = AT(0, 5);
707
+ const Temp_Type X006 = AT(0, 6);
708
+ const Temp_Type X007 = AT(0, 7);
709
+ const Temp_Type X010 = D(F(0.415735f) * AT(1, 0) + F(0.791065f) * AT(3, 0) + F(-0.352443f) * AT(5, 0) + F(0.277785f) * AT(7, 0));
710
+ const Temp_Type X011 = D(F(0.415735f) * AT(1, 1) + F(0.791065f) * AT(3, 1) + F(-0.352443f) * AT(5, 1) + F(0.277785f) * AT(7, 1));
711
+ const Temp_Type X012 = D(F(0.415735f) * AT(1, 2) + F(0.791065f) * AT(3, 2) + F(-0.352443f) * AT(5, 2) + F(0.277785f) * AT(7, 2));
712
+ const Temp_Type X013 = D(F(0.415735f) * AT(1, 3) + F(0.791065f) * AT(3, 3) + F(-0.352443f) * AT(5, 3) + F(0.277785f) * AT(7, 3));
713
+ const Temp_Type X014 = D(F(0.415735f) * AT(1, 4) + F(0.791065f) * AT(3, 4) + F(-0.352443f) * AT(5, 4) + F(0.277785f) * AT(7, 4));
714
+ const Temp_Type X015 = D(F(0.415735f) * AT(1, 5) + F(0.791065f) * AT(3, 5) + F(-0.352443f) * AT(5, 5) + F(0.277785f) * AT(7, 5));
715
+ const Temp_Type X016 = D(F(0.415735f) * AT(1, 6) + F(0.791065f) * AT(3, 6) + F(-0.352443f) * AT(5, 6) + F(0.277785f) * AT(7, 6));
716
+ const Temp_Type X017 = D(F(0.415735f) * AT(1, 7) + F(0.791065f) * AT(3, 7) + F(-0.352443f) * AT(5, 7) + F(0.277785f) * AT(7, 7));
717
+ const Temp_Type X020 = AT(4, 0);
718
+ const Temp_Type X021 = AT(4, 1);
719
+ const Temp_Type X022 = AT(4, 2);
720
+ const Temp_Type X023 = AT(4, 3);
721
+ const Temp_Type X024 = AT(4, 4);
722
+ const Temp_Type X025 = AT(4, 5);
723
+ const Temp_Type X026 = AT(4, 6);
724
+ const Temp_Type X027 = AT(4, 7);
725
+ const Temp_Type X030 = D(F(0.022887f) * AT(1, 0) + F(-0.097545f) * AT(3, 0) + F(0.490393f) * AT(5, 0) + F(0.865723f) * AT(7, 0));
726
+ const Temp_Type X031 = D(F(0.022887f) * AT(1, 1) + F(-0.097545f) * AT(3, 1) + F(0.490393f) * AT(5, 1) + F(0.865723f) * AT(7, 1));
727
+ const Temp_Type X032 = D(F(0.022887f) * AT(1, 2) + F(-0.097545f) * AT(3, 2) + F(0.490393f) * AT(5, 2) + F(0.865723f) * AT(7, 2));
728
+ const Temp_Type X033 = D(F(0.022887f) * AT(1, 3) + F(-0.097545f) * AT(3, 3) + F(0.490393f) * AT(5, 3) + F(0.865723f) * AT(7, 3));
729
+ const Temp_Type X034 = D(F(0.022887f) * AT(1, 4) + F(-0.097545f) * AT(3, 4) + F(0.490393f) * AT(5, 4) + F(0.865723f) * AT(7, 4));
730
+ const Temp_Type X035 = D(F(0.022887f) * AT(1, 5) + F(-0.097545f) * AT(3, 5) + F(0.490393f) * AT(5, 5) + F(0.865723f) * AT(7, 5));
731
+ const Temp_Type X036 = D(F(0.022887f) * AT(1, 6) + F(-0.097545f) * AT(3, 6) + F(0.490393f) * AT(5, 6) + F(0.865723f) * AT(7, 6));
732
+ const Temp_Type X037 = D(F(0.022887f) * AT(1, 7) + F(-0.097545f) * AT(3, 7) + F(0.490393f) * AT(5, 7) + F(0.865723f) * AT(7, 7));
733
+
734
+ // 4x4 = 4x8 times 8x4, matrix 1 is constant
735
+ P.at(0, 0) = X000;
736
+ P.at(0, 1) = D(X001 * F(0.415735f) + X003 * F(0.791065f) + X005 * F(-0.352443f) + X007 * F(0.277785f));
737
+ P.at(0, 2) = X004;
738
+ P.at(0, 3) = D(X001 * F(0.022887f) + X003 * F(-0.097545f) + X005 * F(0.490393f) + X007 * F(0.865723f));
739
+ P.at(1, 0) = X010;
740
+ P.at(1, 1) = D(X011 * F(0.415735f) + X013 * F(0.791065f) + X015 * F(-0.352443f) + X017 * F(0.277785f));
741
+ P.at(1, 2) = X014;
742
+ P.at(1, 3) = D(X011 * F(0.022887f) + X013 * F(-0.097545f) + X015 * F(0.490393f) + X017 * F(0.865723f));
743
+ P.at(2, 0) = X020;
744
+ P.at(2, 1) = D(X021 * F(0.415735f) + X023 * F(0.791065f) + X025 * F(-0.352443f) + X027 * F(0.277785f));
745
+ P.at(2, 2) = X024;
746
+ P.at(2, 3) = D(X021 * F(0.022887f) + X023 * F(-0.097545f) + X025 * F(0.490393f) + X027 * F(0.865723f));
747
+ P.at(3, 0) = X030;
748
+ P.at(3, 1) = D(X031 * F(0.415735f) + X033 * F(0.791065f) + X035 * F(-0.352443f) + X037 * F(0.277785f));
749
+ P.at(3, 2) = X034;
750
+ P.at(3, 3) = D(X031 * F(0.022887f) + X033 * F(-0.097545f) + X035 * F(0.490393f) + X037 * F(0.865723f));
751
+ // 40 muls 24 adds
752
+
753
+ // 4x4 = 4x8 times 8x4, matrix 1 is constant
754
+ Q.at(0, 0) = D(X001 * F(0.906127f) + X003 * F(-0.318190f) + X005 * F(0.212608f) + X007 * F(-0.180240f));
755
+ Q.at(0, 1) = X002;
756
+ Q.at(0, 2) = D(X001 * F(-0.074658f) + X003 * F(0.513280f) + X005 * F(0.768178f) + X007 * F(-0.375330f));
757
+ Q.at(0, 3) = X006;
758
+ Q.at(1, 0) = D(X011 * F(0.906127f) + X013 * F(-0.318190f) + X015 * F(0.212608f) + X017 * F(-0.180240f));
759
+ Q.at(1, 1) = X012;
760
+ Q.at(1, 2) = D(X011 * F(-0.074658f) + X013 * F(0.513280f) + X015 * F(0.768178f) + X017 * F(-0.375330f));
761
+ Q.at(1, 3) = X016;
762
+ Q.at(2, 0) = D(X021 * F(0.906127f) + X023 * F(-0.318190f) + X025 * F(0.212608f) + X027 * F(-0.180240f));
763
+ Q.at(2, 1) = X022;
764
+ Q.at(2, 2) = D(X021 * F(-0.074658f) + X023 * F(0.513280f) + X025 * F(0.768178f) + X027 * F(-0.375330f));
765
+ Q.at(2, 3) = X026;
766
+ Q.at(3, 0) = D(X031 * F(0.906127f) + X033 * F(-0.318190f) + X035 * F(0.212608f) + X037 * F(-0.180240f));
767
+ Q.at(3, 1) = X032;
768
+ Q.at(3, 2) = D(X031 * F(-0.074658f) + X033 * F(0.513280f) + X035 * F(0.768178f) + X037 * F(-0.375330f));
769
+ Q.at(3, 3) = X036;
770
+ // 40 muls 24 adds
771
+ }
772
+ };
773
+
774
+ template<int NUM_ROWS, int NUM_COLS>
775
+ struct R_S
776
+ {
777
+ static void calc(Matrix44& R, Matrix44& S, const jpgd_block_t* pSrc)
778
+ {
779
+ // 4x8 = 4x8 times 8x8, matrix 0 is constant
780
+ const Temp_Type X100 = D(F(0.906127f) * AT(1, 0) + F(-0.318190f) * AT(3, 0) + F(0.212608f) * AT(5, 0) + F(-0.180240f) * AT(7, 0));
781
+ const Temp_Type X101 = D(F(0.906127f) * AT(1, 1) + F(-0.318190f) * AT(3, 1) + F(0.212608f) * AT(5, 1) + F(-0.180240f) * AT(7, 1));
782
+ const Temp_Type X102 = D(F(0.906127f) * AT(1, 2) + F(-0.318190f) * AT(3, 2) + F(0.212608f) * AT(5, 2) + F(-0.180240f) * AT(7, 2));
783
+ const Temp_Type X103 = D(F(0.906127f) * AT(1, 3) + F(-0.318190f) * AT(3, 3) + F(0.212608f) * AT(5, 3) + F(-0.180240f) * AT(7, 3));
784
+ const Temp_Type X104 = D(F(0.906127f) * AT(1, 4) + F(-0.318190f) * AT(3, 4) + F(0.212608f) * AT(5, 4) + F(-0.180240f) * AT(7, 4));
785
+ const Temp_Type X105 = D(F(0.906127f) * AT(1, 5) + F(-0.318190f) * AT(3, 5) + F(0.212608f) * AT(5, 5) + F(-0.180240f) * AT(7, 5));
786
+ const Temp_Type X106 = D(F(0.906127f) * AT(1, 6) + F(-0.318190f) * AT(3, 6) + F(0.212608f) * AT(5, 6) + F(-0.180240f) * AT(7, 6));
787
+ const Temp_Type X107 = D(F(0.906127f) * AT(1, 7) + F(-0.318190f) * AT(3, 7) + F(0.212608f) * AT(5, 7) + F(-0.180240f) * AT(7, 7));
788
+ const Temp_Type X110 = AT(2, 0);
789
+ const Temp_Type X111 = AT(2, 1);
790
+ const Temp_Type X112 = AT(2, 2);
791
+ const Temp_Type X113 = AT(2, 3);
792
+ const Temp_Type X114 = AT(2, 4);
793
+ const Temp_Type X115 = AT(2, 5);
794
+ const Temp_Type X116 = AT(2, 6);
795
+ const Temp_Type X117 = AT(2, 7);
796
+ const Temp_Type X120 = D(F(-0.074658f) * AT(1, 0) + F(0.513280f) * AT(3, 0) + F(0.768178f) * AT(5, 0) + F(-0.375330f) * AT(7, 0));
797
+ const Temp_Type X121 = D(F(-0.074658f) * AT(1, 1) + F(0.513280f) * AT(3, 1) + F(0.768178f) * AT(5, 1) + F(-0.375330f) * AT(7, 1));
798
+ const Temp_Type X122 = D(F(-0.074658f) * AT(1, 2) + F(0.513280f) * AT(3, 2) + F(0.768178f) * AT(5, 2) + F(-0.375330f) * AT(7, 2));
799
+ const Temp_Type X123 = D(F(-0.074658f) * AT(1, 3) + F(0.513280f) * AT(3, 3) + F(0.768178f) * AT(5, 3) + F(-0.375330f) * AT(7, 3));
800
+ const Temp_Type X124 = D(F(-0.074658f) * AT(1, 4) + F(0.513280f) * AT(3, 4) + F(0.768178f) * AT(5, 4) + F(-0.375330f) * AT(7, 4));
801
+ const Temp_Type X125 = D(F(-0.074658f) * AT(1, 5) + F(0.513280f) * AT(3, 5) + F(0.768178f) * AT(5, 5) + F(-0.375330f) * AT(7, 5));
802
+ const Temp_Type X126 = D(F(-0.074658f) * AT(1, 6) + F(0.513280f) * AT(3, 6) + F(0.768178f) * AT(5, 6) + F(-0.375330f) * AT(7, 6));
803
+ const Temp_Type X127 = D(F(-0.074658f) * AT(1, 7) + F(0.513280f) * AT(3, 7) + F(0.768178f) * AT(5, 7) + F(-0.375330f) * AT(7, 7));
804
+ const Temp_Type X130 = AT(6, 0);
805
+ const Temp_Type X131 = AT(6, 1);
806
+ const Temp_Type X132 = AT(6, 2);
807
+ const Temp_Type X133 = AT(6, 3);
808
+ const Temp_Type X134 = AT(6, 4);
809
+ const Temp_Type X135 = AT(6, 5);
810
+ const Temp_Type X136 = AT(6, 6);
811
+ const Temp_Type X137 = AT(6, 7);
812
+ // 80 muls 48 adds
813
+
814
+ // 4x4 = 4x8 times 8x4, matrix 1 is constant
815
+ R.at(0, 0) = X100;
816
+ R.at(0, 1) = D(X101 * F(0.415735f) + X103 * F(0.791065f) + X105 * F(-0.352443f) + X107 * F(0.277785f));
817
+ R.at(0, 2) = X104;
818
+ R.at(0, 3) = D(X101 * F(0.022887f) + X103 * F(-0.097545f) + X105 * F(0.490393f) + X107 * F(0.865723f));
819
+ R.at(1, 0) = X110;
820
+ R.at(1, 1) = D(X111 * F(0.415735f) + X113 * F(0.791065f) + X115 * F(-0.352443f) + X117 * F(0.277785f));
821
+ R.at(1, 2) = X114;
822
+ R.at(1, 3) = D(X111 * F(0.022887f) + X113 * F(-0.097545f) + X115 * F(0.490393f) + X117 * F(0.865723f));
823
+ R.at(2, 0) = X120;
824
+ R.at(2, 1) = D(X121 * F(0.415735f) + X123 * F(0.791065f) + X125 * F(-0.352443f) + X127 * F(0.277785f));
825
+ R.at(2, 2) = X124;
826
+ R.at(2, 3) = D(X121 * F(0.022887f) + X123 * F(-0.097545f) + X125 * F(0.490393f) + X127 * F(0.865723f));
827
+ R.at(3, 0) = X130;
828
+ R.at(3, 1) = D(X131 * F(0.415735f) + X133 * F(0.791065f) + X135 * F(-0.352443f) + X137 * F(0.277785f));
829
+ R.at(3, 2) = X134;
830
+ R.at(3, 3) = D(X131 * F(0.022887f) + X133 * F(-0.097545f) + X135 * F(0.490393f) + X137 * F(0.865723f));
831
+ // 40 muls 24 adds
832
+ // 4x4 = 4x8 times 8x4, matrix 1 is constant
833
+ S.at(0, 0) = D(X101 * F(0.906127f) + X103 * F(-0.318190f) + X105 * F(0.212608f) + X107 * F(-0.180240f));
834
+ S.at(0, 1) = X102;
835
+ S.at(0, 2) = D(X101 * F(-0.074658f) + X103 * F(0.513280f) + X105 * F(0.768178f) + X107 * F(-0.375330f));
836
+ S.at(0, 3) = X106;
837
+ S.at(1, 0) = D(X111 * F(0.906127f) + X113 * F(-0.318190f) + X115 * F(0.212608f) + X117 * F(-0.180240f));
838
+ S.at(1, 1) = X112;
839
+ S.at(1, 2) = D(X111 * F(-0.074658f) + X113 * F(0.513280f) + X115 * F(0.768178f) + X117 * F(-0.375330f));
840
+ S.at(1, 3) = X116;
841
+ S.at(2, 0) = D(X121 * F(0.906127f) + X123 * F(-0.318190f) + X125 * F(0.212608f) + X127 * F(-0.180240f));
842
+ S.at(2, 1) = X122;
843
+ S.at(2, 2) = D(X121 * F(-0.074658f) + X123 * F(0.513280f) + X125 * F(0.768178f) + X127 * F(-0.375330f));
844
+ S.at(2, 3) = X126;
845
+ S.at(3, 0) = D(X131 * F(0.906127f) + X133 * F(-0.318190f) + X135 * F(0.212608f) + X137 * F(-0.180240f));
846
+ S.at(3, 1) = X132;
847
+ S.at(3, 2) = D(X131 * F(-0.074658f) + X133 * F(0.513280f) + X135 * F(0.768178f) + X137 * F(-0.375330f));
848
+ S.at(3, 3) = X136;
849
+ // 40 muls 24 adds
850
+ }
851
+ };
852
+ } // end namespace DCT_Upsample
853
+
854
+ // Unconditionally frees all allocated m_blocks.
855
+ void jpeg_decoder::free_all_blocks()
856
+ {
857
+ m_pStream = NULL;
858
+ for (mem_block *b = m_pMem_blocks; b; )
859
+ {
860
+ mem_block *n = b->m_pNext;
861
+ jpgd_free(b);
862
+ b = n;
863
+ }
864
+ m_pMem_blocks = NULL;
865
+ }
866
+
867
+ // This method handles all errors.
868
+ // It could easily be changed to use C++ exceptions.
869
+ void jpeg_decoder::stop_decoding(jpgd_status status)
870
+ {
871
+ m_error_code = status;
872
+ free_all_blocks();
873
+ longjmp(m_jmp_state, status);
874
+
875
+ // we shouldn't get here as longjmp shouldn't return, but we put it here to make it explicit
876
+ // that this function doesn't return, otherwise we get this error:
877
+ //
878
+ // error : function declared 'noreturn' should not return
879
+ exit(1);
880
+ }
881
+
882
+ void *jpeg_decoder::alloc(size_t nSize, bool zero)
883
+ {
884
+ nSize = (JPGD_MAX(nSize, 1) + 3) & ~3;
885
+ char *rv = NULL;
886
+ for (mem_block *b = m_pMem_blocks; b; b = b->m_pNext)
887
+ {
888
+ if ((b->m_used_count + nSize) <= b->m_size)
889
+ {
890
+ rv = b->m_data + b->m_used_count;
891
+ b->m_used_count += nSize;
892
+ break;
893
+ }
894
+ }
895
+ if (!rv)
896
+ {
897
+ int capacity = JPGD_MAX(32768 - 256, (nSize + 2047) & ~2047);
898
+ mem_block *b = (mem_block*)jpgd_malloc(sizeof(mem_block) + capacity);
899
+ if (!b) stop_decoding(JPGD_NOTENOUGHMEM);
900
+ b->m_pNext = m_pMem_blocks; m_pMem_blocks = b;
901
+ b->m_used_count = nSize;
902
+ b->m_size = capacity;
903
+ rv = b->m_data;
904
+ }
905
+ if (zero) memset(rv, 0, nSize);
906
+ return rv;
907
+ }
908
+
909
+ void jpeg_decoder::word_clear(void *p, uint16 c, uint n)
910
+ {
911
+ uint8 *pD = (uint8*)p;
912
+ const uint8 l = c & 0xFF, h = (c >> 8) & 0xFF;
913
+ while (n)
914
+ {
915
+ pD[0] = l; pD[1] = h; pD += 2;
916
+ n--;
917
+ }
918
+ }
919
+
920
+ // Refill the input buffer.
921
+ // This method will sit in a loop until (A) the buffer is full or (B)
922
+ // the stream's read() method reports and end of file condition.
923
+ void jpeg_decoder::prep_in_buffer()
924
+ {
925
+ m_in_buf_left = 0;
926
+ m_pIn_buf_ofs = m_in_buf;
927
+
928
+ if (m_eof_flag)
929
+ return;
930
+
931
+ do
932
+ {
933
+ int bytes_read = m_pStream->read(m_in_buf + m_in_buf_left, JPGD_IN_BUF_SIZE - m_in_buf_left, &m_eof_flag);
934
+ if (bytes_read == -1)
935
+ stop_decoding(JPGD_STREAM_READ);
936
+
937
+ m_in_buf_left += bytes_read;
938
+ } while ((m_in_buf_left < JPGD_IN_BUF_SIZE) && (!m_eof_flag));
939
+
940
+ m_total_bytes_read += m_in_buf_left;
941
+
942
+ // Pad the end of the block with M_EOI (prevents the decompressor from going off the rails if the stream is invalid).
943
+ // (This dates way back to when this decompressor was written in C/asm, and the all-asm Huffman decoder did some fancy things to increase perf.)
944
+ word_clear(m_pIn_buf_ofs + m_in_buf_left, 0xD9FF, 64);
945
+ }
946
+
947
+ // Read a Huffman code table.
948
+ void jpeg_decoder::read_dht_marker()
949
+ {
950
+ int i, index, count;
951
+ uint8 huff_num[17];
952
+ uint8 huff_val[256];
953
+
954
+ uint num_left = get_bits(16);
955
+
956
+ if (num_left < 2)
957
+ stop_decoding(JPGD_BAD_DHT_MARKER);
958
+
959
+ num_left -= 2;
960
+
961
+ while (num_left)
962
+ {
963
+ index = get_bits(8);
964
+
965
+ huff_num[0] = 0;
966
+
967
+ count = 0;
968
+
969
+ for (i = 1; i <= 16; i++)
970
+ {
971
+ huff_num[i] = static_cast<uint8>(get_bits(8));
972
+ count += huff_num[i];
973
+ }
974
+
975
+ if (count > 255)
976
+ stop_decoding(JPGD_BAD_DHT_COUNTS);
977
+
978
+ for (i = 0; i < count; i++)
979
+ huff_val[i] = static_cast<uint8>(get_bits(8));
980
+
981
+ i = 1 + 16 + count;
982
+
983
+ if (num_left < (uint)i)
984
+ stop_decoding(JPGD_BAD_DHT_MARKER);
985
+
986
+ num_left -= i;
987
+
988
+ if ((index & 0x10) > 0x10)
989
+ stop_decoding(JPGD_BAD_DHT_INDEX);
990
+
991
+ index = (index & 0x0F) + ((index & 0x10) >> 4) * (JPGD_MAX_HUFF_TABLES >> 1);
992
+
993
+ if (index >= JPGD_MAX_HUFF_TABLES)
994
+ stop_decoding(JPGD_BAD_DHT_INDEX);
995
+
996
+ if (!m_huff_num[index])
997
+ m_huff_num[index] = (uint8 *)alloc(17);
998
+
999
+ if (!m_huff_val[index])
1000
+ m_huff_val[index] = (uint8 *)alloc(256);
1001
+
1002
+ m_huff_ac[index] = (index & 0x10) != 0;
1003
+ memcpy(m_huff_num[index], huff_num, 17);
1004
+ memcpy(m_huff_val[index], huff_val, 256);
1005
+ }
1006
+ }
1007
+
1008
+ // Read a quantization table.
1009
+ void jpeg_decoder::read_dqt_marker()
1010
+ {
1011
+ int n, i, prec;
1012
+ uint num_left;
1013
+ uint temp;
1014
+
1015
+ num_left = get_bits(16);
1016
+
1017
+ if (num_left < 2)
1018
+ stop_decoding(JPGD_BAD_DQT_MARKER);
1019
+
1020
+ num_left -= 2;
1021
+
1022
+ while (num_left)
1023
+ {
1024
+ n = get_bits(8);
1025
+ prec = n >> 4;
1026
+ n &= 0x0F;
1027
+
1028
+ if (n >= JPGD_MAX_QUANT_TABLES)
1029
+ stop_decoding(JPGD_BAD_DQT_TABLE);
1030
+
1031
+ if (!m_quant[n])
1032
+ m_quant[n] = (jpgd_quant_t *)alloc(64 * sizeof(jpgd_quant_t));
1033
+
1034
+ // read quantization entries, in zag order
1035
+ for (i = 0; i < 64; i++)
1036
+ {
1037
+ temp = get_bits(8);
1038
+
1039
+ if (prec)
1040
+ temp = (temp << 8) + get_bits(8);
1041
+
1042
+ m_quant[n][i] = static_cast<jpgd_quant_t>(temp);
1043
+ }
1044
+
1045
+ i = 64 + 1;
1046
+
1047
+ if (prec)
1048
+ i += 64;
1049
+
1050
+ if (num_left < (uint)i)
1051
+ stop_decoding(JPGD_BAD_DQT_LENGTH);
1052
+
1053
+ num_left -= i;
1054
+ }
1055
+ }
1056
+
1057
+ // Read the start of frame (SOF) marker.
1058
+ void jpeg_decoder::read_sof_marker()
1059
+ {
1060
+ int i;
1061
+ uint num_left;
1062
+
1063
+ num_left = get_bits(16);
1064
+
1065
+ if (get_bits(8) != 8) /* precision: sorry, only 8-bit precision is supported right now */
1066
+ stop_decoding(JPGD_BAD_PRECISION);
1067
+
1068
+ m_image_y_size = get_bits(16);
1069
+
1070
+ if ((m_image_y_size < 1) || (m_image_y_size > JPGD_MAX_HEIGHT))
1071
+ stop_decoding(JPGD_BAD_HEIGHT);
1072
+
1073
+ m_image_x_size = get_bits(16);
1074
+
1075
+ if ((m_image_x_size < 1) || (m_image_x_size > JPGD_MAX_WIDTH))
1076
+ stop_decoding(JPGD_BAD_WIDTH);
1077
+
1078
+ m_comps_in_frame = get_bits(8);
1079
+
1080
+ if (m_comps_in_frame > JPGD_MAX_COMPONENTS)
1081
+ stop_decoding(JPGD_TOO_MANY_COMPONENTS);
1082
+
1083
+ if (num_left != (uint)(m_comps_in_frame * 3 + 8))
1084
+ stop_decoding(JPGD_BAD_SOF_LENGTH);
1085
+
1086
+ for (i = 0; i < m_comps_in_frame; i++)
1087
+ {
1088
+ m_comp_ident[i] = get_bits(8);
1089
+ m_comp_h_samp[i] = get_bits(4);
1090
+ m_comp_v_samp[i] = get_bits(4);
1091
+ m_comp_quant[i] = get_bits(8);
1092
+ }
1093
+ }
1094
+
1095
+ // Used to skip unrecognized markers.
1096
+ void jpeg_decoder::skip_variable_marker()
1097
+ {
1098
+ uint num_left;
1099
+
1100
+ num_left = get_bits(16);
1101
+
1102
+ if (num_left < 2)
1103
+ stop_decoding(JPGD_BAD_VARIABLE_MARKER);
1104
+
1105
+ num_left -= 2;
1106
+
1107
+ while (num_left)
1108
+ {
1109
+ get_bits(8);
1110
+ num_left--;
1111
+ }
1112
+ }
1113
+
1114
+ // Read a define restart interval (DRI) marker.
1115
+ void jpeg_decoder::read_dri_marker()
1116
+ {
1117
+ if (get_bits(16) != 4)
1118
+ stop_decoding(JPGD_BAD_DRI_LENGTH);
1119
+
1120
+ m_restart_interval = get_bits(16);
1121
+ }
1122
+
1123
+ // Read a start of scan (SOS) marker.
1124
+ void jpeg_decoder::read_sos_marker()
1125
+ {
1126
+ uint num_left;
1127
+ int i, ci, n, c, cc;
1128
+
1129
+ num_left = get_bits(16);
1130
+
1131
+ n = get_bits(8);
1132
+
1133
+ m_comps_in_scan = n;
1134
+
1135
+ num_left -= 3;
1136
+
1137
+ if ( (num_left != (uint)(n * 2 + 3)) || (n < 1) || (n > JPGD_MAX_COMPS_IN_SCAN) )
1138
+ stop_decoding(JPGD_BAD_SOS_LENGTH);
1139
+
1140
+ for (i = 0; i < n; i++)
1141
+ {
1142
+ cc = get_bits(8);
1143
+ c = get_bits(8);
1144
+ num_left -= 2;
1145
+
1146
+ for (ci = 0; ci < m_comps_in_frame; ci++)
1147
+ if (cc == m_comp_ident[ci])
1148
+ break;
1149
+
1150
+ if (ci >= m_comps_in_frame)
1151
+ stop_decoding(JPGD_BAD_SOS_COMP_ID);
1152
+
1153
+ m_comp_list[i] = ci;
1154
+ m_comp_dc_tab[ci] = (c >> 4) & 15;
1155
+ m_comp_ac_tab[ci] = (c & 15) + (JPGD_MAX_HUFF_TABLES >> 1);
1156
+ }
1157
+
1158
+ m_spectral_start = get_bits(8);
1159
+ m_spectral_end = get_bits(8);
1160
+ m_successive_high = get_bits(4);
1161
+ m_successive_low = get_bits(4);
1162
+
1163
+ if (!m_progressive_flag)
1164
+ {
1165
+ m_spectral_start = 0;
1166
+ m_spectral_end = 63;
1167
+ }
1168
+
1169
+ num_left -= 3;
1170
+
1171
+ while (num_left) /* read past whatever is num_left */
1172
+ {
1173
+ get_bits(8);
1174
+ num_left--;
1175
+ }
1176
+ }
1177
+
1178
+ // Finds the next marker.
1179
+ int jpeg_decoder::next_marker()
1180
+ {
1181
+ uint c, bytes;
1182
+
1183
+ bytes = 0;
1184
+
1185
+ do
1186
+ {
1187
+ do
1188
+ {
1189
+ bytes++;
1190
+ c = get_bits(8);
1191
+ } while (c != 0xFF);
1192
+
1193
+ do
1194
+ {
1195
+ c = get_bits(8);
1196
+ } while (c == 0xFF);
1197
+
1198
+ } while (c == 0);
1199
+
1200
+ // If bytes > 0 here, there where extra bytes before the marker (not good).
1201
+
1202
+ return c;
1203
+ }
1204
+
1205
+ // Process markers. Returns when an SOFx, SOI, EOI, or SOS marker is
1206
+ // encountered.
1207
+ int jpeg_decoder::process_markers()
1208
+ {
1209
+ int c;
1210
+
1211
+ for ( ; ; )
1212
+ {
1213
+ c = next_marker();
1214
+
1215
+ switch (c)
1216
+ {
1217
+ case M_SOF0:
1218
+ case M_SOF1:
1219
+ case M_SOF2:
1220
+ case M_SOF3:
1221
+ case M_SOF5:
1222
+ case M_SOF6:
1223
+ case M_SOF7:
1224
+ // case M_JPG:
1225
+ case M_SOF9:
1226
+ case M_SOF10:
1227
+ case M_SOF11:
1228
+ case M_SOF13:
1229
+ case M_SOF14:
1230
+ case M_SOF15:
1231
+ case M_SOI:
1232
+ case M_EOI:
1233
+ case M_SOS:
1234
+ {
1235
+ return c;
1236
+ }
1237
+ case M_DHT:
1238
+ {
1239
+ read_dht_marker();
1240
+ break;
1241
+ }
1242
+ // No arithmitic support - dumb patents!
1243
+ case M_DAC:
1244
+ {
1245
+ stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT);
1246
+ break;
1247
+ }
1248
+ case M_DQT:
1249
+ {
1250
+ read_dqt_marker();
1251
+ break;
1252
+ }
1253
+ case M_DRI:
1254
+ {
1255
+ read_dri_marker();
1256
+ break;
1257
+ }
1258
+ //case M_APP0: /* no need to read the JFIF marker */
1259
+
1260
+ case M_JPG:
1261
+ case M_RST0: /* no parameters */
1262
+ case M_RST1:
1263
+ case M_RST2:
1264
+ case M_RST3:
1265
+ case M_RST4:
1266
+ case M_RST5:
1267
+ case M_RST6:
1268
+ case M_RST7:
1269
+ case M_TEM:
1270
+ {
1271
+ stop_decoding(JPGD_UNEXPECTED_MARKER);
1272
+ break;
1273
+ }
1274
+ default: /* must be DNL, DHP, EXP, APPn, JPGn, COM, or RESn or APP0 */
1275
+ {
1276
+ skip_variable_marker();
1277
+ break;
1278
+ }
1279
+ }
1280
+ }
1281
+ }
1282
+
1283
+ // Finds the start of image (SOI) marker.
1284
+ // This code is rather defensive: it only checks the first 512 bytes to avoid
1285
+ // false positives.
1286
+ void jpeg_decoder::locate_soi_marker()
1287
+ {
1288
+ uint lastchar, thischar;
1289
+ uint bytesleft;
1290
+
1291
+ lastchar = get_bits(8);
1292
+
1293
+ thischar = get_bits(8);
1294
+
1295
+ /* ok if it's a normal JPEG file without a special header */
1296
+
1297
+ if ((lastchar == 0xFF) && (thischar == M_SOI))
1298
+ return;
1299
+
1300
+ bytesleft = 4096; //512;
1301
+
1302
+ for ( ; ; )
1303
+ {
1304
+ if (--bytesleft == 0)
1305
+ stop_decoding(JPGD_NOT_JPEG);
1306
+
1307
+ lastchar = thischar;
1308
+
1309
+ thischar = get_bits(8);
1310
+
1311
+ if (lastchar == 0xFF)
1312
+ {
1313
+ if (thischar == M_SOI)
1314
+ break;
1315
+ else if (thischar == M_EOI) // get_bits will keep returning M_EOI if we read past the end
1316
+ stop_decoding(JPGD_NOT_JPEG);
1317
+ }
1318
+ }
1319
+
1320
+ // Check the next character after marker: if it's not 0xFF, it can't be the start of the next marker, so the file is bad.
1321
+ thischar = (m_bit_buf >> 24) & 0xFF;
1322
+
1323
+ if (thischar != 0xFF)
1324
+ stop_decoding(JPGD_NOT_JPEG);
1325
+ }
1326
+
1327
+ // Find a start of frame (SOF) marker.
1328
+ void jpeg_decoder::locate_sof_marker()
1329
+ {
1330
+ locate_soi_marker();
1331
+
1332
+ int c = process_markers();
1333
+
1334
+ switch (c)
1335
+ {
1336
+ case M_SOF2:
1337
+ m_progressive_flag = JPGD_TRUE;
1338
+ case M_SOF0: /* baseline DCT */
1339
+ case M_SOF1: /* extended sequential DCT */
1340
+ {
1341
+ read_sof_marker();
1342
+ break;
1343
+ }
1344
+ case M_SOF9: /* Arithmitic coding */
1345
+ {
1346
+ stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT);
1347
+ break;
1348
+ }
1349
+ default:
1350
+ {
1351
+ stop_decoding(JPGD_UNSUPPORTED_MARKER);
1352
+ break;
1353
+ }
1354
+ }
1355
+ }
1356
+
1357
+ // Find a start of scan (SOS) marker.
1358
+ int jpeg_decoder::locate_sos_marker()
1359
+ {
1360
+ int c;
1361
+
1362
+ c = process_markers();
1363
+
1364
+ if (c == M_EOI)
1365
+ return JPGD_FALSE;
1366
+ else if (c != M_SOS)
1367
+ stop_decoding(JPGD_UNEXPECTED_MARKER);
1368
+
1369
+ read_sos_marker();
1370
+
1371
+ return JPGD_TRUE;
1372
+ }
1373
+
1374
+ // Reset everything to default/uninitialized state.
1375
+ void jpeg_decoder::init(jpeg_decoder_stream *pStream)
1376
+ {
1377
+ m_pMem_blocks = NULL;
1378
+ m_error_code = JPGD_SUCCESS;
1379
+ m_ready_flag = false;
1380
+ m_image_x_size = m_image_y_size = 0;
1381
+ m_pStream = pStream;
1382
+ m_progressive_flag = JPGD_FALSE;
1383
+
1384
+ memset(m_huff_ac, 0, sizeof(m_huff_ac));
1385
+ memset(m_huff_num, 0, sizeof(m_huff_num));
1386
+ memset(m_huff_val, 0, sizeof(m_huff_val));
1387
+ memset(m_quant, 0, sizeof(m_quant));
1388
+
1389
+ m_scan_type = 0;
1390
+ m_comps_in_frame = 0;
1391
+
1392
+ memset(m_comp_h_samp, 0, sizeof(m_comp_h_samp));
1393
+ memset(m_comp_v_samp, 0, sizeof(m_comp_v_samp));
1394
+ memset(m_comp_quant, 0, sizeof(m_comp_quant));
1395
+ memset(m_comp_ident, 0, sizeof(m_comp_ident));
1396
+ memset(m_comp_h_blocks, 0, sizeof(m_comp_h_blocks));
1397
+ memset(m_comp_v_blocks, 0, sizeof(m_comp_v_blocks));
1398
+
1399
+ m_comps_in_scan = 0;
1400
+ memset(m_comp_list, 0, sizeof(m_comp_list));
1401
+ memset(m_comp_dc_tab, 0, sizeof(m_comp_dc_tab));
1402
+ memset(m_comp_ac_tab, 0, sizeof(m_comp_ac_tab));
1403
+
1404
+ m_spectral_start = 0;
1405
+ m_spectral_end = 0;
1406
+ m_successive_low = 0;
1407
+ m_successive_high = 0;
1408
+ m_max_mcu_x_size = 0;
1409
+ m_max_mcu_y_size = 0;
1410
+ m_blocks_per_mcu = 0;
1411
+ m_max_blocks_per_row = 0;
1412
+ m_mcus_per_row = 0;
1413
+ m_mcus_per_col = 0;
1414
+ m_expanded_blocks_per_component = 0;
1415
+ m_expanded_blocks_per_mcu = 0;
1416
+ m_expanded_blocks_per_row = 0;
1417
+ m_freq_domain_chroma_upsample = false;
1418
+
1419
+ memset(m_mcu_org, 0, sizeof(m_mcu_org));
1420
+
1421
+ m_total_lines_left = 0;
1422
+ m_mcu_lines_left = 0;
1423
+ m_real_dest_bytes_per_scan_line = 0;
1424
+ m_dest_bytes_per_scan_line = 0;
1425
+ m_dest_bytes_per_pixel = 0;
1426
+
1427
+ memset(m_pHuff_tabs, 0, sizeof(m_pHuff_tabs));
1428
+
1429
+ memset(m_dc_coeffs, 0, sizeof(m_dc_coeffs));
1430
+ memset(m_ac_coeffs, 0, sizeof(m_ac_coeffs));
1431
+ memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu));
1432
+
1433
+ m_eob_run = 0;
1434
+
1435
+ memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu));
1436
+
1437
+ m_pIn_buf_ofs = m_in_buf;
1438
+ m_in_buf_left = 0;
1439
+ m_eof_flag = false;
1440
+ m_tem_flag = 0;
1441
+
1442
+ memset(m_in_buf_pad_start, 0, sizeof(m_in_buf_pad_start));
1443
+ memset(m_in_buf, 0, sizeof(m_in_buf));
1444
+ memset(m_in_buf_pad_end, 0, sizeof(m_in_buf_pad_end));
1445
+
1446
+ m_restart_interval = 0;
1447
+ m_restarts_left = 0;
1448
+ m_next_restart_num = 0;
1449
+
1450
+ m_max_mcus_per_row = 0;
1451
+ m_max_blocks_per_mcu = 0;
1452
+ m_max_mcus_per_col = 0;
1453
+
1454
+ memset(m_last_dc_val, 0, sizeof(m_last_dc_val));
1455
+ m_pMCU_coefficients = NULL;
1456
+ m_pSample_buf = NULL;
1457
+
1458
+ m_total_bytes_read = 0;
1459
+
1460
+ m_pScan_line_0 = NULL;
1461
+ m_pScan_line_1 = NULL;
1462
+
1463
+ // Ready the input buffer.
1464
+ prep_in_buffer();
1465
+
1466
+ // Prime the bit buffer.
1467
+ m_bits_left = 16;
1468
+ m_bit_buf = 0;
1469
+
1470
+ get_bits(16);
1471
+ get_bits(16);
1472
+
1473
+ for (int i = 0; i < JPGD_MAX_BLOCKS_PER_MCU; i++)
1474
+ m_mcu_block_max_zag[i] = 64;
1475
+ }
1476
+
1477
+ #define SCALEBITS 16
1478
+ #define ONE_HALF ((int) 1 << (SCALEBITS-1))
1479
+ #define FIX(x) ((int) ((x) * (1L<<SCALEBITS) + 0.5f))
1480
+
1481
+ // Create a few tables that allow us to quickly convert YCbCr to RGB.
1482
+ void jpeg_decoder::create_look_ups()
1483
+ {
1484
+ for (int i = 0; i <= 255; i++)
1485
+ {
1486
+ int k = i - 128;
1487
+ m_crr[i] = ( FIX(1.40200f) * k + ONE_HALF) >> SCALEBITS;
1488
+ m_cbb[i] = ( FIX(1.77200f) * k + ONE_HALF) >> SCALEBITS;
1489
+ m_crg[i] = (-FIX(0.71414f)) * k;
1490
+ m_cbg[i] = (-FIX(0.34414f)) * k + ONE_HALF;
1491
+ }
1492
+ }
1493
+
1494
+ // This method throws back into the stream any bytes that where read
1495
+ // into the bit buffer during initial marker scanning.
1496
+ void jpeg_decoder::fix_in_buffer()
1497
+ {
1498
+ // In case any 0xFF's where pulled into the buffer during marker scanning.
1499
+ JPGD_ASSERT((m_bits_left & 7) == 0);
1500
+
1501
+ if (m_bits_left == 16)
1502
+ stuff_char( (uint8)(m_bit_buf & 0xFF));
1503
+
1504
+ if (m_bits_left >= 8)
1505
+ stuff_char( (uint8)((m_bit_buf >> 8) & 0xFF));
1506
+
1507
+ stuff_char((uint8)((m_bit_buf >> 16) & 0xFF));
1508
+ stuff_char((uint8)((m_bit_buf >> 24) & 0xFF));
1509
+
1510
+ m_bits_left = 16;
1511
+ get_bits_no_markers(16);
1512
+ get_bits_no_markers(16);
1513
+ }
1514
+
1515
+ void jpeg_decoder::transform_mcu(int mcu_row)
1516
+ {
1517
+ jpgd_block_t* pSrc_ptr = m_pMCU_coefficients;
1518
+ uint8* pDst_ptr = m_pSample_buf + mcu_row * m_blocks_per_mcu * 64;
1519
+
1520
+ for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++)
1521
+ {
1522
+ idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]);
1523
+ pSrc_ptr += 64;
1524
+ pDst_ptr += 64;
1525
+ }
1526
+ }
1527
+
1528
+ static const uint8 s_max_rc[64] =
1529
+ {
1530
+ 17, 18, 34, 50, 50, 51, 52, 52, 52, 68, 84, 84, 84, 84, 85, 86, 86, 86, 86, 86,
1531
+ 102, 118, 118, 118, 118, 118, 118, 119, 120, 120, 120, 120, 120, 120, 120, 136,
1532
+ 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136,
1533
+ 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136
1534
+ };
1535
+
1536
+ void jpeg_decoder::transform_mcu_expand(int mcu_row)
1537
+ {
1538
+ jpgd_block_t* pSrc_ptr = m_pMCU_coefficients;
1539
+ uint8* pDst_ptr = m_pSample_buf + mcu_row * m_expanded_blocks_per_mcu * 64;
1540
+
1541
+ // Y IDCT
1542
+ int mcu_block;
1543
+ for (mcu_block = 0; mcu_block < m_expanded_blocks_per_component; mcu_block++)
1544
+ {
1545
+ idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]);
1546
+ pSrc_ptr += 64;
1547
+ pDst_ptr += 64;
1548
+ }
1549
+
1550
+ // Chroma IDCT, with upsampling
1551
+ jpgd_block_t temp_block[64];
1552
+
1553
+ for (int i = 0; i < 2; i++)
1554
+ {
1555
+ DCT_Upsample::Matrix44 P, Q, R, S;
1556
+
1557
+ JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] >= 1);
1558
+ JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] <= 64);
1559
+
1560
+ switch (s_max_rc[m_mcu_block_max_zag[mcu_block++] - 1])
1561
+ {
1562
+ case 1*16+1:
1563
+ DCT_Upsample::P_Q<1, 1>::calc(P, Q, pSrc_ptr);
1564
+ DCT_Upsample::R_S<1, 1>::calc(R, S, pSrc_ptr);
1565
+ break;
1566
+ case 1*16+2:
1567
+ DCT_Upsample::P_Q<1, 2>::calc(P, Q, pSrc_ptr);
1568
+ DCT_Upsample::R_S<1, 2>::calc(R, S, pSrc_ptr);
1569
+ break;
1570
+ case 2*16+2:
1571
+ DCT_Upsample::P_Q<2, 2>::calc(P, Q, pSrc_ptr);
1572
+ DCT_Upsample::R_S<2, 2>::calc(R, S, pSrc_ptr);
1573
+ break;
1574
+ case 3*16+2:
1575
+ DCT_Upsample::P_Q<3, 2>::calc(P, Q, pSrc_ptr);
1576
+ DCT_Upsample::R_S<3, 2>::calc(R, S, pSrc_ptr);
1577
+ break;
1578
+ case 3*16+3:
1579
+ DCT_Upsample::P_Q<3, 3>::calc(P, Q, pSrc_ptr);
1580
+ DCT_Upsample::R_S<3, 3>::calc(R, S, pSrc_ptr);
1581
+ break;
1582
+ case 3*16+4:
1583
+ DCT_Upsample::P_Q<3, 4>::calc(P, Q, pSrc_ptr);
1584
+ DCT_Upsample::R_S<3, 4>::calc(R, S, pSrc_ptr);
1585
+ break;
1586
+ case 4*16+4:
1587
+ DCT_Upsample::P_Q<4, 4>::calc(P, Q, pSrc_ptr);
1588
+ DCT_Upsample::R_S<4, 4>::calc(R, S, pSrc_ptr);
1589
+ break;
1590
+ case 5*16+4:
1591
+ DCT_Upsample::P_Q<5, 4>::calc(P, Q, pSrc_ptr);
1592
+ DCT_Upsample::R_S<5, 4>::calc(R, S, pSrc_ptr);
1593
+ break;
1594
+ case 5*16+5:
1595
+ DCT_Upsample::P_Q<5, 5>::calc(P, Q, pSrc_ptr);
1596
+ DCT_Upsample::R_S<5, 5>::calc(R, S, pSrc_ptr);
1597
+ break;
1598
+ case 5*16+6:
1599
+ DCT_Upsample::P_Q<5, 6>::calc(P, Q, pSrc_ptr);
1600
+ DCT_Upsample::R_S<5, 6>::calc(R, S, pSrc_ptr);
1601
+ break;
1602
+ case 6*16+6:
1603
+ DCT_Upsample::P_Q<6, 6>::calc(P, Q, pSrc_ptr);
1604
+ DCT_Upsample::R_S<6, 6>::calc(R, S, pSrc_ptr);
1605
+ break;
1606
+ case 7*16+6:
1607
+ DCT_Upsample::P_Q<7, 6>::calc(P, Q, pSrc_ptr);
1608
+ DCT_Upsample::R_S<7, 6>::calc(R, S, pSrc_ptr);
1609
+ break;
1610
+ case 7*16+7:
1611
+ DCT_Upsample::P_Q<7, 7>::calc(P, Q, pSrc_ptr);
1612
+ DCT_Upsample::R_S<7, 7>::calc(R, S, pSrc_ptr);
1613
+ break;
1614
+ case 7*16+8:
1615
+ DCT_Upsample::P_Q<7, 8>::calc(P, Q, pSrc_ptr);
1616
+ DCT_Upsample::R_S<7, 8>::calc(R, S, pSrc_ptr);
1617
+ break;
1618
+ case 8*16+8:
1619
+ DCT_Upsample::P_Q<8, 8>::calc(P, Q, pSrc_ptr);
1620
+ DCT_Upsample::R_S<8, 8>::calc(R, S, pSrc_ptr);
1621
+ break;
1622
+ default:
1623
+ JPGD_ASSERT(false);
1624
+ }
1625
+
1626
+ DCT_Upsample::Matrix44 a(P + Q); P -= Q;
1627
+ DCT_Upsample::Matrix44& b = P;
1628
+ DCT_Upsample::Matrix44 c(R + S); R -= S;
1629
+ DCT_Upsample::Matrix44& d = R;
1630
+
1631
+ DCT_Upsample::Matrix44::add_and_store(temp_block, a, c);
1632
+ idct_4x4(temp_block, pDst_ptr);
1633
+ pDst_ptr += 64;
1634
+
1635
+ DCT_Upsample::Matrix44::sub_and_store(temp_block, a, c);
1636
+ idct_4x4(temp_block, pDst_ptr);
1637
+ pDst_ptr += 64;
1638
+
1639
+ DCT_Upsample::Matrix44::add_and_store(temp_block, b, d);
1640
+ idct_4x4(temp_block, pDst_ptr);
1641
+ pDst_ptr += 64;
1642
+
1643
+ DCT_Upsample::Matrix44::sub_and_store(temp_block, b, d);
1644
+ idct_4x4(temp_block, pDst_ptr);
1645
+ pDst_ptr += 64;
1646
+
1647
+ pSrc_ptr += 64;
1648
+ }
1649
+ }
1650
+
1651
+ // Loads and dequantizes the next row of (already decoded) coefficients.
1652
+ // Progressive images only.
1653
+ void jpeg_decoder::load_next_row()
1654
+ {
1655
+ int i;
1656
+ jpgd_block_t *p;
1657
+ jpgd_quant_t *q;
1658
+ int mcu_row, mcu_block, row_block = 0;
1659
+ int component_num, component_id;
1660
+ int block_x_mcu[JPGD_MAX_COMPONENTS];
1661
+
1662
+ memset(block_x_mcu, 0, JPGD_MAX_COMPONENTS * sizeof(int));
1663
+
1664
+ for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++)
1665
+ {
1666
+ int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0;
1667
+
1668
+ for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++)
1669
+ {
1670
+ component_id = m_mcu_org[mcu_block];
1671
+ q = m_quant[m_comp_quant[component_id]];
1672
+
1673
+ p = m_pMCU_coefficients + 64 * mcu_block;
1674
+
1675
+ jpgd_block_t* pAC = coeff_buf_getp(m_ac_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs);
1676
+ jpgd_block_t* pDC = coeff_buf_getp(m_dc_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs);
1677
+ p[0] = pDC[0];
1678
+ memcpy(&p[1], &pAC[1], 63 * sizeof(jpgd_block_t));
1679
+
1680
+ for (i = 63; i > 0; i--)
1681
+ if (p[g_ZAG[i]])
1682
+ break;
1683
+
1684
+ m_mcu_block_max_zag[mcu_block] = i + 1;
1685
+
1686
+ for ( ; i >= 0; i--)
1687
+ if (p[g_ZAG[i]])
1688
+ p[g_ZAG[i]] = static_cast<jpgd_block_t>(p[g_ZAG[i]] * q[i]);
1689
+
1690
+ row_block++;
1691
+
1692
+ if (m_comps_in_scan == 1)
1693
+ block_x_mcu[component_id]++;
1694
+ else
1695
+ {
1696
+ if (++block_x_mcu_ofs == m_comp_h_samp[component_id])
1697
+ {
1698
+ block_x_mcu_ofs = 0;
1699
+
1700
+ if (++block_y_mcu_ofs == m_comp_v_samp[component_id])
1701
+ {
1702
+ block_y_mcu_ofs = 0;
1703
+
1704
+ block_x_mcu[component_id] += m_comp_h_samp[component_id];
1705
+ }
1706
+ }
1707
+ }
1708
+ }
1709
+
1710
+ if (m_freq_domain_chroma_upsample)
1711
+ transform_mcu_expand(mcu_row);
1712
+ else
1713
+ transform_mcu(mcu_row);
1714
+ }
1715
+
1716
+ if (m_comps_in_scan == 1)
1717
+ m_block_y_mcu[m_comp_list[0]]++;
1718
+ else
1719
+ {
1720
+ for (component_num = 0; component_num < m_comps_in_scan; component_num++)
1721
+ {
1722
+ component_id = m_comp_list[component_num];
1723
+
1724
+ m_block_y_mcu[component_id] += m_comp_v_samp[component_id];
1725
+ }
1726
+ }
1727
+ }
1728
+
1729
+ // Restart interval processing.
1730
+ void jpeg_decoder::process_restart()
1731
+ {
1732
+ int i;
1733
+ int c = 0;
1734
+
1735
+ // Align to a byte boundry
1736
+ // FIXME: Is this really necessary? get_bits_no_markers() never reads in markers!
1737
+ //get_bits_no_markers(m_bits_left & 7);
1738
+
1739
+ // Let's scan a little bit to find the marker, but not _too_ far.
1740
+ // 1536 is a "fudge factor" that determines how much to scan.
1741
+ for (i = 1536; i > 0; i--)
1742
+ if (get_char() == 0xFF)
1743
+ break;
1744
+
1745
+ if (i == 0)
1746
+ stop_decoding(JPGD_BAD_RESTART_MARKER);
1747
+
1748
+ for ( ; i > 0; i--)
1749
+ if ((c = get_char()) != 0xFF)
1750
+ break;
1751
+
1752
+ if (i == 0)
1753
+ stop_decoding(JPGD_BAD_RESTART_MARKER);
1754
+
1755
+ // Is it the expected marker? If not, something bad happened.
1756
+ if (c != (m_next_restart_num + M_RST0))
1757
+ stop_decoding(JPGD_BAD_RESTART_MARKER);
1758
+
1759
+ // Reset each component's DC prediction values.
1760
+ memset(&m_last_dc_val, 0, m_comps_in_frame * sizeof(uint));
1761
+
1762
+ m_eob_run = 0;
1763
+
1764
+ m_restarts_left = m_restart_interval;
1765
+
1766
+ m_next_restart_num = (m_next_restart_num + 1) & 7;
1767
+
1768
+ // Get the bit buffer going again...
1769
+
1770
+ m_bits_left = 16;
1771
+ get_bits_no_markers(16);
1772
+ get_bits_no_markers(16);
1773
+ }
1774
+
1775
+ static inline int dequantize_ac(int c, int q) { c *= q; return c; }
1776
+
1777
+ // Decodes and dequantizes the next row of coefficients.
1778
+ void jpeg_decoder::decode_next_row()
1779
+ {
1780
+ int row_block = 0;
1781
+
1782
+ for (int mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++)
1783
+ {
1784
+ if ((m_restart_interval) && (m_restarts_left == 0))
1785
+ process_restart();
1786
+
1787
+ jpgd_block_t* p = m_pMCU_coefficients;
1788
+ for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++, p += 64)
1789
+ {
1790
+ int component_id = m_mcu_org[mcu_block];
1791
+ jpgd_quant_t* q = m_quant[m_comp_quant[component_id]];
1792
+
1793
+ int r, s;
1794
+ s = huff_decode(m_pHuff_tabs[m_comp_dc_tab[component_id]], r);
1795
+ s = HUFF_EXTEND(r, s);
1796
+
1797
+ m_last_dc_val[component_id] = (s += m_last_dc_val[component_id]);
1798
+
1799
+ p[0] = static_cast<jpgd_block_t>(s * q[0]);
1800
+
1801
+ int prev_num_set = m_mcu_block_max_zag[mcu_block];
1802
+
1803
+ huff_tables *pH = m_pHuff_tabs[m_comp_ac_tab[component_id]];
1804
+
1805
+ int k;
1806
+ for (k = 1; k < 64; k++)
1807
+ {
1808
+ int extra_bits;
1809
+ s = huff_decode(pH, extra_bits);
1810
+
1811
+ r = s >> 4;
1812
+ s &= 15;
1813
+
1814
+ if (s)
1815
+ {
1816
+ if (r)
1817
+ {
1818
+ if ((k + r) > 63)
1819
+ stop_decoding(JPGD_DECODE_ERROR);
1820
+
1821
+ if (k < prev_num_set)
1822
+ {
1823
+ int n = JPGD_MIN(r, prev_num_set - k);
1824
+ int kt = k;
1825
+ while (n--)
1826
+ p[g_ZAG[kt++]] = 0;
1827
+ }
1828
+
1829
+ k += r;
1830
+ }
1831
+
1832
+ s = HUFF_EXTEND(extra_bits, s);
1833
+
1834
+ JPGD_ASSERT(k < 64);
1835
+
1836
+ p[g_ZAG[k]] = static_cast<jpgd_block_t>(dequantize_ac(s, q[k])); //s * q[k];
1837
+ }
1838
+ else
1839
+ {
1840
+ if (r == 15)
1841
+ {
1842
+ if ((k + 16) > 64)
1843
+ stop_decoding(JPGD_DECODE_ERROR);
1844
+
1845
+ if (k < prev_num_set)
1846
+ {
1847
+ int n = JPGD_MIN(16, prev_num_set - k);
1848
+ int kt = k;
1849
+ while (n--)
1850
+ {
1851
+ JPGD_ASSERT(kt <= 63);
1852
+ p[g_ZAG[kt++]] = 0;
1853
+ }
1854
+ }
1855
+
1856
+ k += 16 - 1; // - 1 because the loop counter is k
1857
+ // BEGIN EPIC MOD
1858
+ JPGD_ASSERT(k < 64 && p[g_ZAG[k]] == 0);
1859
+ // END EPIC MOD
1860
+ }
1861
+ else
1862
+ break;
1863
+ }
1864
+ }
1865
+
1866
+ if (k < prev_num_set)
1867
+ {
1868
+ int kt = k;
1869
+ while (kt < prev_num_set)
1870
+ p[g_ZAG[kt++]] = 0;
1871
+ }
1872
+
1873
+ m_mcu_block_max_zag[mcu_block] = k;
1874
+
1875
+ row_block++;
1876
+ }
1877
+
1878
+ if (m_freq_domain_chroma_upsample)
1879
+ transform_mcu_expand(mcu_row);
1880
+ else
1881
+ transform_mcu(mcu_row);
1882
+
1883
+ m_restarts_left--;
1884
+ }
1885
+ }
1886
+
1887
+ // YCbCr H1V1 (1x1:1:1, 3 m_blocks per MCU) to RGB
1888
+ void jpeg_decoder::H1V1Convert()
1889
+ {
1890
+ int row = m_max_mcu_y_size - m_mcu_lines_left;
1891
+ uint8 *d = m_pScan_line_0;
1892
+ uint8 *s = m_pSample_buf + row * 8;
1893
+
1894
+ for (int i = m_max_mcus_per_row; i > 0; i--)
1895
+ {
1896
+ for (int j = 0; j < 8; j++)
1897
+ {
1898
+ int y = s[j];
1899
+ int cb = s[64+j];
1900
+ int cr = s[128+j];
1901
+
1902
+ if (jpg_format == ERGBFormatJPG::BGRA)
1903
+ {
1904
+ d[0] = clamp(y + m_cbb[cb]);
1905
+ d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16));
1906
+ d[2] = clamp(y + m_crr[cr]);
1907
+ d[3] = 255;
1908
+ }
1909
+ else
1910
+ {
1911
+ d[0] = clamp(y + m_crr[cr]);
1912
+ d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16));
1913
+ d[2] = clamp(y + m_cbb[cb]);
1914
+ d[3] = 255;
1915
+ }
1916
+ d += 4;
1917
+ }
1918
+
1919
+ s += 64*3;
1920
+ }
1921
+ }
1922
+
1923
+ // YCbCr H2V1 (2x1:1:1, 4 m_blocks per MCU) to RGB
1924
+ void jpeg_decoder::H2V1Convert()
1925
+ {
1926
+ int row = m_max_mcu_y_size - m_mcu_lines_left;
1927
+ uint8 *d0 = m_pScan_line_0;
1928
+ uint8 *y = m_pSample_buf + row * 8;
1929
+ uint8 *c = m_pSample_buf + 2*64 + row * 8;
1930
+
1931
+ for (int i = m_max_mcus_per_row; i > 0; i--)
1932
+ {
1933
+ for (int l = 0; l < 2; l++)
1934
+ {
1935
+ for (int j = 0; j < 4; j++)
1936
+ {
1937
+ int cb = c[0];
1938
+ int cr = c[64];
1939
+
1940
+ int rc = m_crr[cr];
1941
+ int gc = ((m_crg[cr] + m_cbg[cb]) >> 16);
1942
+ int bc = m_cbb[cb];
1943
+
1944
+ int yy = y[j<<1];
1945
+ if (jpg_format == ERGBFormatJPG::BGRA)
1946
+ {
1947
+ d0[0] = clamp(yy+bc);
1948
+ d0[1] = clamp(yy+gc);
1949
+ d0[2] = clamp(yy+rc);
1950
+ d0[3] = 255;
1951
+ yy = y[(j<<1)+1];
1952
+ d0[4] = clamp(yy+bc);
1953
+ d0[5] = clamp(yy+gc);
1954
+ d0[6] = clamp(yy+rc);
1955
+ d0[7] = 255;
1956
+ }
1957
+ else
1958
+ {
1959
+ d0[0] = clamp(yy+rc);
1960
+ d0[1] = clamp(yy+gc);
1961
+ d0[2] = clamp(yy+bc);
1962
+ d0[3] = 255;
1963
+ yy = y[(j<<1)+1];
1964
+ d0[4] = clamp(yy+rc);
1965
+ d0[5] = clamp(yy+gc);
1966
+ d0[6] = clamp(yy+bc);
1967
+ d0[7] = 255;
1968
+ }
1969
+
1970
+ d0 += 8;
1971
+
1972
+ c++;
1973
+ }
1974
+ y += 64;
1975
+ }
1976
+
1977
+ y += 64*4 - 64*2;
1978
+ c += 64*4 - 8;
1979
+ }
1980
+ }
1981
+
1982
+ // YCbCr H2V1 (1x2:1:1, 4 m_blocks per MCU) to RGB
1983
+ void jpeg_decoder::H1V2Convert()
1984
+ {
1985
+ int row = m_max_mcu_y_size - m_mcu_lines_left;
1986
+ uint8 *d0 = m_pScan_line_0;
1987
+ uint8 *d1 = m_pScan_line_1;
1988
+ uint8 *y;
1989
+ uint8 *c;
1990
+
1991
+ if (row < 8)
1992
+ y = m_pSample_buf + row * 8;
1993
+ else
1994
+ y = m_pSample_buf + 64*1 + (row & 7) * 8;
1995
+
1996
+ c = m_pSample_buf + 64*2 + (row >> 1) * 8;
1997
+
1998
+ for (int i = m_max_mcus_per_row; i > 0; i--)
1999
+ {
2000
+ for (int j = 0; j < 8; j++)
2001
+ {
2002
+ int cb = c[0+j];
2003
+ int cr = c[64+j];
2004
+
2005
+ int rc = m_crr[cr];
2006
+ int gc = ((m_crg[cr] + m_cbg[cb]) >> 16);
2007
+ int bc = m_cbb[cb];
2008
+
2009
+ int yy = y[j];
2010
+ if (jpg_format == ERGBFormatJPG::BGRA)
2011
+ {
2012
+ d0[0] = clamp(yy+bc);
2013
+ d0[1] = clamp(yy+gc);
2014
+ d0[2] = clamp(yy+rc);
2015
+ d0[3] = 255;
2016
+ yy = y[8+j];
2017
+ d1[0] = clamp(yy+bc);
2018
+ d1[1] = clamp(yy+gc);
2019
+ d1[2] = clamp(yy+rc);
2020
+ d1[3] = 255;
2021
+ }
2022
+ else
2023
+ {
2024
+ d0[0] = clamp(yy+rc);
2025
+ d0[1] = clamp(yy+gc);
2026
+ d0[2] = clamp(yy+bc);
2027
+ d0[3] = 255;
2028
+ yy = y[8+j];
2029
+ d1[0] = clamp(yy+rc);
2030
+ d1[1] = clamp(yy+gc);
2031
+ d1[2] = clamp(yy+bc);
2032
+ d1[3] = 255;
2033
+ }
2034
+
2035
+ d0 += 4;
2036
+ d1 += 4;
2037
+ }
2038
+
2039
+ y += 64*4;
2040
+ c += 64*4;
2041
+ }
2042
+ }
2043
+
2044
+ // YCbCr H2V2 (2x2:1:1, 6 m_blocks per MCU) to RGB
2045
+ void jpeg_decoder::H2V2Convert()
2046
+ {
2047
+ int row = m_max_mcu_y_size - m_mcu_lines_left;
2048
+ uint8 *d0 = m_pScan_line_0;
2049
+ uint8 *d1 = m_pScan_line_1;
2050
+ uint8 *y;
2051
+ uint8 *c;
2052
+
2053
+ if (row < 8)
2054
+ y = m_pSample_buf + row * 8;
2055
+ else
2056
+ y = m_pSample_buf + 64*2 + (row & 7) * 8;
2057
+
2058
+ c = m_pSample_buf + 64*4 + (row >> 1) * 8;
2059
+
2060
+ for (int i = m_max_mcus_per_row; i > 0; i--)
2061
+ {
2062
+ for (int l = 0; l < 2; l++)
2063
+ {
2064
+ for (int j = 0; j < 8; j += 2)
2065
+ {
2066
+ int cb = c[0];
2067
+ int cr = c[64];
2068
+
2069
+ int rc = m_crr[cr];
2070
+ int gc = ((m_crg[cr] + m_cbg[cb]) >> 16);
2071
+ int bc = m_cbb[cb];
2072
+
2073
+ int yy = y[j];
2074
+ if (jpg_format == ERGBFormatJPG::BGRA)
2075
+ {
2076
+ d0[0] = clamp(yy+bc);
2077
+ d0[1] = clamp(yy+gc);
2078
+ d0[2] = clamp(yy+rc);
2079
+ d0[3] = 255;
2080
+ yy = y[j+1];
2081
+ d0[4] = clamp(yy+bc);
2082
+ d0[5] = clamp(yy+gc);
2083
+ d0[6] = clamp(yy+rc);
2084
+ d0[7] = 255;
2085
+ yy = y[j+8];
2086
+ d1[0] = clamp(yy+bc);
2087
+ d1[1] = clamp(yy+gc);
2088
+ d1[2] = clamp(yy+rc);
2089
+ d1[3] = 255;
2090
+ yy = y[j+8+1];
2091
+ d1[4] = clamp(yy+bc);
2092
+ d1[5] = clamp(yy+gc);
2093
+ d1[6] = clamp(yy+rc);
2094
+ d1[7] = 255;
2095
+ }
2096
+ else
2097
+ {
2098
+ d0[0] = clamp(yy+rc);
2099
+ d0[1] = clamp(yy+gc);
2100
+ d0[2] = clamp(yy+bc);
2101
+ d0[3] = 255;
2102
+ yy = y[j+1];
2103
+ d0[4] = clamp(yy+rc);
2104
+ d0[5] = clamp(yy+gc);
2105
+ d0[6] = clamp(yy+bc);
2106
+ d0[7] = 255;
2107
+ yy = y[j+8];
2108
+ d1[0] = clamp(yy+rc);
2109
+ d1[1] = clamp(yy+gc);
2110
+ d1[2] = clamp(yy+bc);
2111
+ d1[3] = 255;
2112
+ yy = y[j+8+1];
2113
+ d1[4] = clamp(yy+rc);
2114
+ d1[5] = clamp(yy+gc);
2115
+ d1[6] = clamp(yy+bc);
2116
+ d1[7] = 255;
2117
+ }
2118
+
2119
+ d0 += 8;
2120
+ d1 += 8;
2121
+
2122
+ c++;
2123
+ }
2124
+ y += 64;
2125
+ }
2126
+
2127
+ y += 64*6 - 64*2;
2128
+ c += 64*6 - 8;
2129
+ }
2130
+ }
2131
+
2132
+ // Y (1 block per MCU) to 8-bit grayscale
2133
+ void jpeg_decoder::gray_convert()
2134
+ {
2135
+ int row = m_max_mcu_y_size - m_mcu_lines_left;
2136
+ uint8 *d = m_pScan_line_0;
2137
+ uint8 *s = m_pSample_buf + row * 8;
2138
+
2139
+ for (int i = m_max_mcus_per_row; i > 0; i--)
2140
+ {
2141
+ *(uint *)d = *(uint *)s;
2142
+ *(uint *)(&d[4]) = *(uint *)(&s[4]);
2143
+
2144
+ s += 64;
2145
+ d += 8;
2146
+ }
2147
+ }
2148
+
2149
+ void jpeg_decoder::expanded_convert()
2150
+ {
2151
+ int row = m_max_mcu_y_size - m_mcu_lines_left;
2152
+
2153
+ uint8* Py = m_pSample_buf + (row / 8) * 64 * m_comp_h_samp[0] + (row & 7) * 8;
2154
+
2155
+ uint8* d = m_pScan_line_0;
2156
+
2157
+ for (int i = m_max_mcus_per_row; i > 0; i--)
2158
+ {
2159
+ for (int k = 0; k < m_max_mcu_x_size; k += 8)
2160
+ {
2161
+ const int Y_ofs = k * 8;
2162
+ const int Cb_ofs = Y_ofs + 64 * m_expanded_blocks_per_component;
2163
+ const int Cr_ofs = Y_ofs + 64 * m_expanded_blocks_per_component * 2;
2164
+ for (int j = 0; j < 8; j++)
2165
+ {
2166
+ int y = Py[Y_ofs + j];
2167
+ int cb = Py[Cb_ofs + j];
2168
+ int cr = Py[Cr_ofs + j];
2169
+
2170
+ if (jpg_format == ERGBFormatJPG::BGRA)
2171
+ {
2172
+ d[0] = clamp(y + m_cbb[cb]);
2173
+ d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16));
2174
+ d[2] = clamp(y + m_crr[cr]);
2175
+ d[3] = 255;
2176
+ }
2177
+ else
2178
+ {
2179
+ d[0] = clamp(y + m_crr[cr]);
2180
+ d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16));
2181
+ d[2] = clamp(y + m_cbb[cb]);
2182
+ d[3] = 255;
2183
+ }
2184
+
2185
+ d += 4;
2186
+ }
2187
+ }
2188
+
2189
+ Py += 64 * m_expanded_blocks_per_mcu;
2190
+ }
2191
+ }
2192
+
2193
+ // Find end of image (EOI) marker, so we can return to the user the exact size of the input stream.
2194
+ void jpeg_decoder::find_eoi()
2195
+ {
2196
+ if (!m_progressive_flag)
2197
+ {
2198
+ // Attempt to read the EOI marker.
2199
+ //get_bits_no_markers(m_bits_left & 7);
2200
+
2201
+ // Prime the bit buffer
2202
+ m_bits_left = 16;
2203
+ get_bits(16);
2204
+ get_bits(16);
2205
+
2206
+ // The next marker _should_ be EOI
2207
+ process_markers();
2208
+ }
2209
+
2210
+ m_total_bytes_read -= m_in_buf_left;
2211
+ }
2212
+
2213
+ int jpeg_decoder::decode(const void** pScan_line, uint* pScan_line_len)
2214
+ {
2215
+ if ((m_error_code) || (!m_ready_flag))
2216
+ return JPGD_FAILED;
2217
+
2218
+ if (m_total_lines_left == 0)
2219
+ return JPGD_DONE;
2220
+
2221
+ if (m_mcu_lines_left == 0)
2222
+ {
2223
+ if (setjmp(m_jmp_state))
2224
+ return JPGD_FAILED;
2225
+
2226
+ if (m_progressive_flag)
2227
+ load_next_row();
2228
+ else
2229
+ decode_next_row();
2230
+
2231
+ // Find the EOI marker if that was the last row.
2232
+ if (m_total_lines_left <= m_max_mcu_y_size)
2233
+ find_eoi();
2234
+
2235
+ m_mcu_lines_left = m_max_mcu_y_size;
2236
+ }
2237
+
2238
+ if (m_freq_domain_chroma_upsample)
2239
+ {
2240
+ expanded_convert();
2241
+ *pScan_line = m_pScan_line_0;
2242
+ }
2243
+ else
2244
+ {
2245
+ switch (m_scan_type)
2246
+ {
2247
+ case JPGD_YH2V2:
2248
+ {
2249
+ if ((m_mcu_lines_left & 1) == 0)
2250
+ {
2251
+ H2V2Convert();
2252
+ *pScan_line = m_pScan_line_0;
2253
+ }
2254
+ else
2255
+ *pScan_line = m_pScan_line_1;
2256
+
2257
+ break;
2258
+ }
2259
+ case JPGD_YH2V1:
2260
+ {
2261
+ H2V1Convert();
2262
+ *pScan_line = m_pScan_line_0;
2263
+ break;
2264
+ }
2265
+ case JPGD_YH1V2:
2266
+ {
2267
+ if ((m_mcu_lines_left & 1) == 0)
2268
+ {
2269
+ H1V2Convert();
2270
+ *pScan_line = m_pScan_line_0;
2271
+ }
2272
+ else
2273
+ *pScan_line = m_pScan_line_1;
2274
+
2275
+ break;
2276
+ }
2277
+ case JPGD_YH1V1:
2278
+ {
2279
+ H1V1Convert();
2280
+ *pScan_line = m_pScan_line_0;
2281
+ break;
2282
+ }
2283
+ case JPGD_GRAYSCALE:
2284
+ {
2285
+ gray_convert();
2286
+ *pScan_line = m_pScan_line_0;
2287
+
2288
+ break;
2289
+ }
2290
+ }
2291
+ }
2292
+
2293
+ *pScan_line_len = m_real_dest_bytes_per_scan_line;
2294
+
2295
+ m_mcu_lines_left--;
2296
+ m_total_lines_left--;
2297
+
2298
+ return JPGD_SUCCESS;
2299
+ }
2300
+
2301
+ // Creates the tables needed for efficient Huffman decoding.
2302
+ void jpeg_decoder::make_huff_table(int index, huff_tables *pH)
2303
+ {
2304
+ int p, i, l, si;
2305
+ uint8 huffsize[257];
2306
+ uint huffcode[257];
2307
+ uint code;
2308
+ uint subtree;
2309
+ int code_size;
2310
+ int lastp;
2311
+ int nextfreeentry;
2312
+ int currententry;
2313
+
2314
+ pH->ac_table = m_huff_ac[index] != 0;
2315
+
2316
+ p = 0;
2317
+
2318
+ for (l = 1; l <= 16; l++)
2319
+ {
2320
+ for (i = 1; i <= m_huff_num[index][l]; i++)
2321
+ huffsize[p++] = static_cast<uint8>(l);
2322
+ }
2323
+
2324
+ huffsize[p] = 0;
2325
+
2326
+ lastp = p;
2327
+
2328
+ code = 0;
2329
+ si = huffsize[0];
2330
+ p = 0;
2331
+
2332
+ while (huffsize[p])
2333
+ {
2334
+ while (huffsize[p] == si)
2335
+ {
2336
+ huffcode[p++] = code;
2337
+ code++;
2338
+ }
2339
+
2340
+ code <<= 1;
2341
+ si++;
2342
+ }
2343
+
2344
+ memset(pH->look_up, 0, sizeof(pH->look_up));
2345
+ memset(pH->look_up2, 0, sizeof(pH->look_up2));
2346
+ memset(pH->tree, 0, sizeof(pH->tree));
2347
+ memset(pH->code_size, 0, sizeof(pH->code_size));
2348
+
2349
+ nextfreeentry = -1;
2350
+
2351
+ p = 0;
2352
+
2353
+ while (p < lastp)
2354
+ {
2355
+ i = m_huff_val[index][p];
2356
+ code = huffcode[p];
2357
+ code_size = huffsize[p];
2358
+
2359
+ pH->code_size[i] = static_cast<uint8>(code_size);
2360
+
2361
+ if (code_size <= 8)
2362
+ {
2363
+ code <<= (8 - code_size);
2364
+
2365
+ for (l = 1 << (8 - code_size); l > 0; l--)
2366
+ {
2367
+ JPGD_ASSERT(i < 256);
2368
+
2369
+ pH->look_up[code] = i;
2370
+
2371
+ bool has_extrabits = false;
2372
+ int extra_bits = 0;
2373
+ int num_extra_bits = i & 15;
2374
+
2375
+ int bits_to_fetch = code_size;
2376
+ if (num_extra_bits)
2377
+ {
2378
+ int total_codesize = code_size + num_extra_bits;
2379
+ if (total_codesize <= 8)
2380
+ {
2381
+ has_extrabits = true;
2382
+ extra_bits = ((1 << num_extra_bits) - 1) & (code >> (8 - total_codesize));
2383
+ JPGD_ASSERT(extra_bits <= 0x7FFF);
2384
+ bits_to_fetch += num_extra_bits;
2385
+ }
2386
+ }
2387
+
2388
+ if (!has_extrabits)
2389
+ pH->look_up2[code] = i | (bits_to_fetch << 8);
2390
+ else
2391
+ pH->look_up2[code] = i | 0x8000 | (extra_bits << 16) | (bits_to_fetch << 8);
2392
+
2393
+ code++;
2394
+ }
2395
+ }
2396
+ else
2397
+ {
2398
+ subtree = (code >> (code_size - 8)) & 0xFF;
2399
+
2400
+ currententry = pH->look_up[subtree];
2401
+
2402
+ if (currententry == 0)
2403
+ {
2404
+ pH->look_up[subtree] = currententry = nextfreeentry;
2405
+ pH->look_up2[subtree] = currententry = nextfreeentry;
2406
+
2407
+ nextfreeentry -= 2;
2408
+ }
2409
+
2410
+ code <<= (16 - (code_size - 8));
2411
+
2412
+ for (l = code_size; l > 9; l--)
2413
+ {
2414
+ if ((code & 0x8000) == 0)
2415
+ currententry--;
2416
+
2417
+ if (pH->tree[-currententry - 1] == 0)
2418
+ {
2419
+ pH->tree[-currententry - 1] = nextfreeentry;
2420
+
2421
+ currententry = nextfreeentry;
2422
+
2423
+ nextfreeentry -= 2;
2424
+ }
2425
+ else
2426
+ currententry = pH->tree[-currententry - 1];
2427
+
2428
+ code <<= 1;
2429
+ }
2430
+
2431
+ if ((code & 0x8000) == 0)
2432
+ currententry--;
2433
+
2434
+ pH->tree[-currententry - 1] = i;
2435
+ }
2436
+
2437
+ p++;
2438
+ }
2439
+ }
2440
+
2441
+ // Verifies the quantization tables needed for this scan are available.
2442
+ void jpeg_decoder::check_quant_tables()
2443
+ {
2444
+ for (int i = 0; i < m_comps_in_scan; i++)
2445
+ if (m_quant[m_comp_quant[m_comp_list[i]]] == NULL)
2446
+ stop_decoding(JPGD_UNDEFINED_QUANT_TABLE);
2447
+ }
2448
+
2449
+ // Verifies that all the Huffman tables needed for this scan are available.
2450
+ void jpeg_decoder::check_huff_tables()
2451
+ {
2452
+ for (int i = 0; i < m_comps_in_scan; i++)
2453
+ {
2454
+ if ((m_spectral_start == 0) && (m_huff_num[m_comp_dc_tab[m_comp_list[i]]] == NULL))
2455
+ stop_decoding(JPGD_UNDEFINED_HUFF_TABLE);
2456
+
2457
+ if ((m_spectral_end > 0) && (m_huff_num[m_comp_ac_tab[m_comp_list[i]]] == NULL))
2458
+ stop_decoding(JPGD_UNDEFINED_HUFF_TABLE);
2459
+ }
2460
+
2461
+ for (int i = 0; i < JPGD_MAX_HUFF_TABLES; i++)
2462
+ if (m_huff_num[i])
2463
+ {
2464
+ if (!m_pHuff_tabs[i])
2465
+ m_pHuff_tabs[i] = (huff_tables *)alloc(sizeof(huff_tables));
2466
+
2467
+ make_huff_table(i, m_pHuff_tabs[i]);
2468
+ }
2469
+ }
2470
+
2471
+ // Determines the component order inside each MCU.
2472
+ // Also calcs how many MCU's are on each row, etc.
2473
+ void jpeg_decoder::calc_mcu_block_order()
2474
+ {
2475
+ int component_num, component_id;
2476
+ int max_h_samp = 0, max_v_samp = 0;
2477
+
2478
+ for (component_id = 0; component_id < m_comps_in_frame; component_id++)
2479
+ {
2480
+ if (m_comp_h_samp[component_id] > max_h_samp)
2481
+ max_h_samp = m_comp_h_samp[component_id];
2482
+
2483
+ if (m_comp_v_samp[component_id] > max_v_samp)
2484
+ max_v_samp = m_comp_v_samp[component_id];
2485
+ }
2486
+
2487
+ for (component_id = 0; component_id < m_comps_in_frame; component_id++)
2488
+ {
2489
+ m_comp_h_blocks[component_id] = ((((m_image_x_size * m_comp_h_samp[component_id]) + (max_h_samp - 1)) / max_h_samp) + 7) / 8;
2490
+ m_comp_v_blocks[component_id] = ((((m_image_y_size * m_comp_v_samp[component_id]) + (max_v_samp - 1)) / max_v_samp) + 7) / 8;
2491
+ }
2492
+
2493
+ if (m_comps_in_scan == 1)
2494
+ {
2495
+ m_mcus_per_row = m_comp_h_blocks[m_comp_list[0]];
2496
+ m_mcus_per_col = m_comp_v_blocks[m_comp_list[0]];
2497
+ }
2498
+ else
2499
+ {
2500
+ m_mcus_per_row = (((m_image_x_size + 7) / 8) + (max_h_samp - 1)) / max_h_samp;
2501
+ m_mcus_per_col = (((m_image_y_size + 7) / 8) + (max_v_samp - 1)) / max_v_samp;
2502
+ }
2503
+
2504
+ if (m_comps_in_scan == 1)
2505
+ {
2506
+ m_mcu_org[0] = m_comp_list[0];
2507
+
2508
+ m_blocks_per_mcu = 1;
2509
+ }
2510
+ else
2511
+ {
2512
+ m_blocks_per_mcu = 0;
2513
+
2514
+ for (component_num = 0; component_num < m_comps_in_scan; component_num++)
2515
+ {
2516
+ int num_blocks;
2517
+
2518
+ component_id = m_comp_list[component_num];
2519
+
2520
+ num_blocks = m_comp_h_samp[component_id] * m_comp_v_samp[component_id];
2521
+
2522
+ while (num_blocks--)
2523
+ m_mcu_org[m_blocks_per_mcu++] = component_id;
2524
+ }
2525
+ }
2526
+ }
2527
+
2528
+ // Starts a new scan.
2529
+ int jpeg_decoder::init_scan()
2530
+ {
2531
+ if (!locate_sos_marker())
2532
+ return JPGD_FALSE;
2533
+
2534
+ calc_mcu_block_order();
2535
+
2536
+ check_huff_tables();
2537
+
2538
+ check_quant_tables();
2539
+
2540
+ memset(m_last_dc_val, 0, m_comps_in_frame * sizeof(uint));
2541
+
2542
+ m_eob_run = 0;
2543
+
2544
+ if (m_restart_interval)
2545
+ {
2546
+ m_restarts_left = m_restart_interval;
2547
+ m_next_restart_num = 0;
2548
+ }
2549
+
2550
+ fix_in_buffer();
2551
+
2552
+ return JPGD_TRUE;
2553
+ }
2554
+
2555
+ // Starts a frame. Determines if the number of components or sampling factors
2556
+ // are supported.
2557
+ void jpeg_decoder::init_frame()
2558
+ {
2559
+ int i;
2560
+
2561
+ if (m_comps_in_frame == 1)
2562
+ {
2563
+ if ((m_comp_h_samp[0] != 1) || (m_comp_v_samp[0] != 1))
2564
+ stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);
2565
+
2566
+ m_scan_type = JPGD_GRAYSCALE;
2567
+ m_max_blocks_per_mcu = 1;
2568
+ m_max_mcu_x_size = 8;
2569
+ m_max_mcu_y_size = 8;
2570
+ }
2571
+ else if (m_comps_in_frame == 3)
2572
+ {
2573
+ if ( ((m_comp_h_samp[1] != 1) || (m_comp_v_samp[1] != 1)) ||
2574
+ ((m_comp_h_samp[2] != 1) || (m_comp_v_samp[2] != 1)) )
2575
+ stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);
2576
+
2577
+ if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1))
2578
+ {
2579
+ m_scan_type = JPGD_YH1V1;
2580
+
2581
+ m_max_blocks_per_mcu = 3;
2582
+ m_max_mcu_x_size = 8;
2583
+ m_max_mcu_y_size = 8;
2584
+ }
2585
+ else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1))
2586
+ {
2587
+ m_scan_type = JPGD_YH2V1;
2588
+ m_max_blocks_per_mcu = 4;
2589
+ m_max_mcu_x_size = 16;
2590
+ m_max_mcu_y_size = 8;
2591
+ }
2592
+ else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 2))
2593
+ {
2594
+ m_scan_type = JPGD_YH1V2;
2595
+ m_max_blocks_per_mcu = 4;
2596
+ m_max_mcu_x_size = 8;
2597
+ m_max_mcu_y_size = 16;
2598
+ }
2599
+ else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2))
2600
+ {
2601
+ m_scan_type = JPGD_YH2V2;
2602
+ m_max_blocks_per_mcu = 6;
2603
+ m_max_mcu_x_size = 16;
2604
+ m_max_mcu_y_size = 16;
2605
+ }
2606
+ else
2607
+ stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);
2608
+ }
2609
+ else
2610
+ stop_decoding(JPGD_UNSUPPORTED_COLORSPACE);
2611
+
2612
+ m_max_mcus_per_row = (m_image_x_size + (m_max_mcu_x_size - 1)) / m_max_mcu_x_size;
2613
+ m_max_mcus_per_col = (m_image_y_size + (m_max_mcu_y_size - 1)) / m_max_mcu_y_size;
2614
+
2615
+ // These values are for the *destination* pixels: after conversion.
2616
+ if (m_scan_type == JPGD_GRAYSCALE)
2617
+ m_dest_bytes_per_pixel = 1;
2618
+ else
2619
+ m_dest_bytes_per_pixel = 4;
2620
+
2621
+ m_dest_bytes_per_scan_line = ((m_image_x_size + 15) & 0xFFF0) * m_dest_bytes_per_pixel;
2622
+
2623
+ m_real_dest_bytes_per_scan_line = (m_image_x_size * m_dest_bytes_per_pixel);
2624
+
2625
+ // Initialize two scan line buffers.
2626
+ m_pScan_line_0 = (uint8 *)alloc(m_dest_bytes_per_scan_line, true);
2627
+ if ((m_scan_type == JPGD_YH1V2) || (m_scan_type == JPGD_YH2V2))
2628
+ m_pScan_line_1 = (uint8 *)alloc(m_dest_bytes_per_scan_line, true);
2629
+
2630
+ m_max_blocks_per_row = m_max_mcus_per_row * m_max_blocks_per_mcu;
2631
+
2632
+ // Should never happen
2633
+ if (m_max_blocks_per_row > JPGD_MAX_BLOCKS_PER_ROW)
2634
+ stop_decoding(JPGD_ASSERTION_ERROR);
2635
+
2636
+ // Allocate the coefficient buffer, enough for one MCU
2637
+ m_pMCU_coefficients = (jpgd_block_t*)alloc(m_max_blocks_per_mcu * 64 * sizeof(jpgd_block_t));
2638
+
2639
+ for (i = 0; i < m_max_blocks_per_mcu; i++)
2640
+ m_mcu_block_max_zag[i] = 64;
2641
+
2642
+ m_expanded_blocks_per_component = m_comp_h_samp[0] * m_comp_v_samp[0];
2643
+ m_expanded_blocks_per_mcu = m_expanded_blocks_per_component * m_comps_in_frame;
2644
+ m_expanded_blocks_per_row = m_max_mcus_per_row * m_expanded_blocks_per_mcu;
2645
+ // Freq. domain chroma upsampling is only supported for H2V2 subsampling factor.
2646
+ // BEGIN EPIC MOD
2647
+ #if JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING
2648
+ m_freq_domain_chroma_upsample = (m_expanded_blocks_per_mcu == 4*3);
2649
+ #else
2650
+ m_freq_domain_chroma_upsample = 0;
2651
+ #endif
2652
+ // END EPIC MOD
2653
+
2654
+ if (m_freq_domain_chroma_upsample)
2655
+ m_pSample_buf = (uint8 *)alloc(m_expanded_blocks_per_row * 64);
2656
+ else
2657
+ m_pSample_buf = (uint8 *)alloc(m_max_blocks_per_row * 64);
2658
+
2659
+ m_total_lines_left = m_image_y_size;
2660
+
2661
+ m_mcu_lines_left = 0;
2662
+
2663
+ create_look_ups();
2664
+ }
2665
+
2666
+ // The coeff_buf series of methods originally stored the coefficients
2667
+ // into a "virtual" file which was located in EMS, XMS, or a disk file. A cache
2668
+ // was used to make this process more efficient. Now, we can store the entire
2669
+ // thing in RAM.
2670
+ jpeg_decoder::coeff_buf* jpeg_decoder::coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y)
2671
+ {
2672
+ coeff_buf* cb = (coeff_buf*)alloc(sizeof(coeff_buf));
2673
+
2674
+ cb->block_num_x = block_num_x;
2675
+ cb->block_num_y = block_num_y;
2676
+ cb->block_len_x = block_len_x;
2677
+ cb->block_len_y = block_len_y;
2678
+ cb->block_size = (block_len_x * block_len_y) * sizeof(jpgd_block_t);
2679
+ cb->pData = (uint8 *)alloc(cb->block_size * block_num_x * block_num_y, true);
2680
+ return cb;
2681
+ }
2682
+
2683
+ inline jpgd_block_t *jpeg_decoder::coeff_buf_getp(coeff_buf *cb, int block_x, int block_y)
2684
+ {
2685
+ JPGD_ASSERT((block_x < cb->block_num_x) && (block_y < cb->block_num_y));
2686
+ return (jpgd_block_t *)(cb->pData + block_x * cb->block_size + block_y * (cb->block_size * cb->block_num_x));
2687
+ }
2688
+
2689
+ // The following methods decode the various types of m_blocks encountered
2690
+ // in progressively encoded images.
2691
+ void jpeg_decoder::decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y)
2692
+ {
2693
+ int s, r;
2694
+ jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y);
2695
+
2696
+ if ((s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_dc_tab[component_id]])) != 0)
2697
+ {
2698
+ r = pD->get_bits_no_markers(s);
2699
+ s = HUFF_EXTEND(r, s);
2700
+ }
2701
+
2702
+ pD->m_last_dc_val[component_id] = (s += pD->m_last_dc_val[component_id]);
2703
+
2704
+ p[0] = static_cast<jpgd_block_t>(s << pD->m_successive_low);
2705
+ }
2706
+
2707
+ void jpeg_decoder::decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y)
2708
+ {
2709
+ if (pD->get_bits_no_markers(1))
2710
+ {
2711
+ jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y);
2712
+
2713
+ p[0] |= (1 << pD->m_successive_low);
2714
+ }
2715
+ }
2716
+
2717
+ void jpeg_decoder::decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y)
2718
+ {
2719
+ int k, s, r;
2720
+
2721
+ if (pD->m_eob_run)
2722
+ {
2723
+ pD->m_eob_run--;
2724
+ return;
2725
+ }
2726
+
2727
+ jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y);
2728
+
2729
+ for (k = pD->m_spectral_start; k <= pD->m_spectral_end; k++)
2730
+ {
2731
+ s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]);
2732
+
2733
+ r = s >> 4;
2734
+ s &= 15;
2735
+
2736
+ if (s)
2737
+ {
2738
+ if ((k += r) > 63)
2739
+ pD->stop_decoding(JPGD_DECODE_ERROR);
2740
+
2741
+ r = pD->get_bits_no_markers(s);
2742
+ s = HUFF_EXTEND(r, s);
2743
+
2744
+ p[g_ZAG[k]] = static_cast<jpgd_block_t>(s << pD->m_successive_low);
2745
+ }
2746
+ else
2747
+ {
2748
+ if (r == 15)
2749
+ {
2750
+ if ((k += 15) > 63)
2751
+ pD->stop_decoding(JPGD_DECODE_ERROR);
2752
+ }
2753
+ else
2754
+ {
2755
+ pD->m_eob_run = 1 << r;
2756
+
2757
+ if (r)
2758
+ pD->m_eob_run += pD->get_bits_no_markers(r);
2759
+
2760
+ pD->m_eob_run--;
2761
+
2762
+ break;
2763
+ }
2764
+ }
2765
+ }
2766
+ }
2767
+
2768
+ void jpeg_decoder::decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y)
2769
+ {
2770
+ int s, k, r;
2771
+ int p1 = 1 << pD->m_successive_low;
2772
+ int m1 = (-1) << pD->m_successive_low;
2773
+ jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y);
2774
+
2775
+ k = pD->m_spectral_start;
2776
+
2777
+ if (pD->m_eob_run == 0)
2778
+ {
2779
+ for ( ; k <= pD->m_spectral_end; k++)
2780
+ {
2781
+ s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]);
2782
+
2783
+ r = s >> 4;
2784
+ s &= 15;
2785
+
2786
+ if (s)
2787
+ {
2788
+ if (s != 1)
2789
+ pD->stop_decoding(JPGD_DECODE_ERROR);
2790
+
2791
+ if (pD->get_bits_no_markers(1))
2792
+ s = p1;
2793
+ else
2794
+ s = m1;
2795
+ }
2796
+ else
2797
+ {
2798
+ if (r != 15)
2799
+ {
2800
+ pD->m_eob_run = 1 << r;
2801
+
2802
+ if (r)
2803
+ pD->m_eob_run += pD->get_bits_no_markers(r);
2804
+
2805
+ break;
2806
+ }
2807
+ }
2808
+
2809
+ do
2810
+ {
2811
+ // BEGIN EPIC MOD
2812
+ JPGD_ASSERT(k < 64);
2813
+ // END EPIC MOD
2814
+
2815
+ jpgd_block_t *this_coef = p + g_ZAG[k];
2816
+
2817
+ if (*this_coef != 0)
2818
+ {
2819
+ if (pD->get_bits_no_markers(1))
2820
+ {
2821
+ if ((*this_coef & p1) == 0)
2822
+ {
2823
+ if (*this_coef >= 0)
2824
+ *this_coef = static_cast<jpgd_block_t>(*this_coef + p1);
2825
+ else
2826
+ *this_coef = static_cast<jpgd_block_t>(*this_coef + m1);
2827
+ }
2828
+ }
2829
+ }
2830
+ else
2831
+ {
2832
+ if (--r < 0)
2833
+ break;
2834
+ }
2835
+
2836
+ k++;
2837
+
2838
+ } while (k <= pD->m_spectral_end);
2839
+
2840
+ if ((s) && (k < 64))
2841
+ {
2842
+ p[g_ZAG[k]] = static_cast<jpgd_block_t>(s);
2843
+ }
2844
+ }
2845
+ }
2846
+
2847
+ if (pD->m_eob_run > 0)
2848
+ {
2849
+ for ( ; k <= pD->m_spectral_end; k++)
2850
+ {
2851
+ // BEGIN EPIC MOD
2852
+ JPGD_ASSERT(k < 64);
2853
+ // END EPIC MOD
2854
+
2855
+ jpgd_block_t *this_coef = p + g_ZAG[k];
2856
+
2857
+ if (*this_coef != 0)
2858
+ {
2859
+ if (pD->get_bits_no_markers(1))
2860
+ {
2861
+ if ((*this_coef & p1) == 0)
2862
+ {
2863
+ if (*this_coef >= 0)
2864
+ *this_coef = static_cast<jpgd_block_t>(*this_coef + p1);
2865
+ else
2866
+ *this_coef = static_cast<jpgd_block_t>(*this_coef + m1);
2867
+ }
2868
+ }
2869
+ }
2870
+ }
2871
+
2872
+ pD->m_eob_run--;
2873
+ }
2874
+ }
2875
+
2876
+ // Decode a scan in a progressively encoded image.
2877
+ void jpeg_decoder::decode_scan(pDecode_block_func decode_block_func)
2878
+ {
2879
+ int mcu_row, mcu_col, mcu_block;
2880
+ int block_x_mcu[JPGD_MAX_COMPONENTS], m_block_y_mcu[JPGD_MAX_COMPONENTS];
2881
+
2882
+ memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu));
2883
+
2884
+ for (mcu_col = 0; mcu_col < m_mcus_per_col; mcu_col++)
2885
+ {
2886
+ int component_num, component_id;
2887
+
2888
+ memset(block_x_mcu, 0, sizeof(block_x_mcu));
2889
+
2890
+ for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++)
2891
+ {
2892
+ int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0;
2893
+
2894
+ if ((m_restart_interval) && (m_restarts_left == 0))
2895
+ process_restart();
2896
+
2897
+ for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++)
2898
+ {
2899
+ component_id = m_mcu_org[mcu_block];
2900
+
2901
+ decode_block_func(this, component_id, block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs);
2902
+
2903
+ if (m_comps_in_scan == 1)
2904
+ block_x_mcu[component_id]++;
2905
+ else
2906
+ {
2907
+ if (++block_x_mcu_ofs == m_comp_h_samp[component_id])
2908
+ {
2909
+ block_x_mcu_ofs = 0;
2910
+
2911
+ if (++block_y_mcu_ofs == m_comp_v_samp[component_id])
2912
+ {
2913
+ block_y_mcu_ofs = 0;
2914
+ block_x_mcu[component_id] += m_comp_h_samp[component_id];
2915
+ }
2916
+ }
2917
+ }
2918
+ }
2919
+
2920
+ m_restarts_left--;
2921
+ }
2922
+
2923
+ if (m_comps_in_scan == 1)
2924
+ m_block_y_mcu[m_comp_list[0]]++;
2925
+ else
2926
+ {
2927
+ for (component_num = 0; component_num < m_comps_in_scan; component_num++)
2928
+ {
2929
+ component_id = m_comp_list[component_num];
2930
+ m_block_y_mcu[component_id] += m_comp_v_samp[component_id];
2931
+ }
2932
+ }
2933
+ }
2934
+ }
2935
+
2936
+ // Decode a progressively encoded image.
2937
+ void jpeg_decoder::init_progressive()
2938
+ {
2939
+ int i;
2940
+
2941
+ if (m_comps_in_frame == 4)
2942
+ stop_decoding(JPGD_UNSUPPORTED_COLORSPACE);
2943
+
2944
+ // Allocate the coefficient buffers.
2945
+ for (i = 0; i < m_comps_in_frame; i++)
2946
+ {
2947
+ m_dc_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 1, 1);
2948
+ m_ac_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 8, 8);
2949
+ }
2950
+
2951
+ for ( ; ; )
2952
+ {
2953
+ int dc_only_scan, refinement_scan;
2954
+ pDecode_block_func decode_block_func;
2955
+
2956
+ if (!init_scan())
2957
+ break;
2958
+
2959
+ dc_only_scan = (m_spectral_start == 0);
2960
+ refinement_scan = (m_successive_high != 0);
2961
+
2962
+ if ((m_spectral_start > m_spectral_end) || (m_spectral_end > 63))
2963
+ stop_decoding(JPGD_BAD_SOS_SPECTRAL);
2964
+
2965
+ if (dc_only_scan)
2966
+ {
2967
+ if (m_spectral_end)
2968
+ stop_decoding(JPGD_BAD_SOS_SPECTRAL);
2969
+ }
2970
+ else if (m_comps_in_scan != 1) /* AC scans can only contain one component */
2971
+ stop_decoding(JPGD_BAD_SOS_SPECTRAL);
2972
+
2973
+ if ((refinement_scan) && (m_successive_low != m_successive_high - 1))
2974
+ stop_decoding(JPGD_BAD_SOS_SUCCESSIVE);
2975
+
2976
+ if (dc_only_scan)
2977
+ {
2978
+ if (refinement_scan)
2979
+ decode_block_func = decode_block_dc_refine;
2980
+ else
2981
+ decode_block_func = decode_block_dc_first;
2982
+ }
2983
+ else
2984
+ {
2985
+ if (refinement_scan)
2986
+ decode_block_func = decode_block_ac_refine;
2987
+ else
2988
+ decode_block_func = decode_block_ac_first;
2989
+ }
2990
+
2991
+ decode_scan(decode_block_func);
2992
+
2993
+ m_bits_left = 16;
2994
+ get_bits(16);
2995
+ get_bits(16);
2996
+ }
2997
+
2998
+ m_comps_in_scan = m_comps_in_frame;
2999
+
3000
+ for (i = 0; i < m_comps_in_frame; i++)
3001
+ m_comp_list[i] = i;
3002
+
3003
+ calc_mcu_block_order();
3004
+ }
3005
+
3006
+ void jpeg_decoder::init_sequential()
3007
+ {
3008
+ if (!init_scan())
3009
+ stop_decoding(JPGD_UNEXPECTED_MARKER);
3010
+ }
3011
+
3012
+ void jpeg_decoder::decode_start()
3013
+ {
3014
+ init_frame();
3015
+
3016
+ if (m_progressive_flag)
3017
+ init_progressive();
3018
+ else
3019
+ init_sequential();
3020
+ }
3021
+
3022
+ void jpeg_decoder::decode_init(jpeg_decoder_stream *pStream)
3023
+ {
3024
+ init(pStream);
3025
+ locate_sof_marker();
3026
+ }
3027
+
3028
+ jpeg_decoder::jpeg_decoder(jpeg_decoder_stream *pStream)
3029
+ {
3030
+ if (setjmp(m_jmp_state))
3031
+ return;
3032
+ decode_init(pStream);
3033
+ }
3034
+
3035
+ int jpeg_decoder::begin_decoding()
3036
+ {
3037
+ if (m_ready_flag)
3038
+ return JPGD_SUCCESS;
3039
+
3040
+ if (m_error_code)
3041
+ return JPGD_FAILED;
3042
+
3043
+ if (setjmp(m_jmp_state))
3044
+ return JPGD_FAILED;
3045
+
3046
+ decode_start();
3047
+
3048
+ m_ready_flag = true;
3049
+
3050
+ return JPGD_SUCCESS;
3051
+ }
3052
+
3053
+ jpeg_decoder::~jpeg_decoder()
3054
+ {
3055
+ free_all_blocks();
3056
+ }
3057
+
3058
+ jpeg_decoder_file_stream::jpeg_decoder_file_stream()
3059
+ {
3060
+ m_pFile = NULL;
3061
+ m_eof_flag = false;
3062
+ m_error_flag = false;
3063
+ }
3064
+
3065
+ void jpeg_decoder_file_stream::close()
3066
+ {
3067
+ if (m_pFile)
3068
+ {
3069
+ fclose(m_pFile);
3070
+ m_pFile = NULL;
3071
+ }
3072
+
3073
+ m_eof_flag = false;
3074
+ m_error_flag = false;
3075
+ }
3076
+
3077
+ jpeg_decoder_file_stream::~jpeg_decoder_file_stream()
3078
+ {
3079
+ close();
3080
+ }
3081
+
3082
+ bool jpeg_decoder_file_stream::open(const char *Pfilename)
3083
+ {
3084
+ close();
3085
+
3086
+ m_eof_flag = false;
3087
+ m_error_flag = false;
3088
+
3089
+ #if defined(_MSC_VER)
3090
+ m_pFile = NULL;
3091
+ fopen_s(&m_pFile, Pfilename, "rb");
3092
+ #else
3093
+ m_pFile = fopen(Pfilename, "rb");
3094
+ #endif
3095
+ return m_pFile != NULL;
3096
+ }
3097
+
3098
+ int jpeg_decoder_file_stream::read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag)
3099
+ {
3100
+ if (!m_pFile)
3101
+ return -1;
3102
+
3103
+ if (m_eof_flag)
3104
+ {
3105
+ *pEOF_flag = true;
3106
+ return 0;
3107
+ }
3108
+
3109
+ if (m_error_flag)
3110
+ return -1;
3111
+
3112
+ int bytes_read = static_cast<int>(fread(pBuf, 1, max_bytes_to_read, m_pFile));
3113
+ if (bytes_read < max_bytes_to_read)
3114
+ {
3115
+ if (ferror(m_pFile))
3116
+ {
3117
+ m_error_flag = true;
3118
+ return -1;
3119
+ }
3120
+
3121
+ m_eof_flag = true;
3122
+ *pEOF_flag = true;
3123
+ }
3124
+
3125
+ return bytes_read;
3126
+ }
3127
+
3128
+ bool jpeg_decoder_mem_stream::open(const uint8 *pSrc_data, uint size)
3129
+ {
3130
+ close();
3131
+ m_pSrc_data = pSrc_data;
3132
+ m_ofs = 0;
3133
+ m_size = size;
3134
+ return true;
3135
+ }
3136
+
3137
+ int jpeg_decoder_mem_stream::read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag)
3138
+ {
3139
+ *pEOF_flag = false;
3140
+
3141
+ if (!m_pSrc_data)
3142
+ return -1;
3143
+
3144
+ uint bytes_remaining = m_size - m_ofs;
3145
+ if ((uint)max_bytes_to_read > bytes_remaining)
3146
+ {
3147
+ max_bytes_to_read = bytes_remaining;
3148
+ *pEOF_flag = true;
3149
+ }
3150
+
3151
+ memcpy(pBuf, m_pSrc_data + m_ofs, max_bytes_to_read);
3152
+ m_ofs += max_bytes_to_read;
3153
+
3154
+ return max_bytes_to_read;
3155
+ }
3156
+
3157
+ unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream, int *width, int *height, int *actual_comps, int req_comps)
3158
+ {
3159
+ if (!actual_comps)
3160
+ return NULL;
3161
+ *actual_comps = 0;
3162
+
3163
+ if ((!pStream) || (!width) || (!height) || (!req_comps))
3164
+ return NULL;
3165
+
3166
+ if ((req_comps != 1) && (req_comps != 3) && (req_comps != 4))
3167
+ return NULL;
3168
+
3169
+ jpeg_decoder decoder(pStream);
3170
+ if (decoder.get_error_code() != JPGD_SUCCESS)
3171
+ return NULL;
3172
+
3173
+ const int image_width = decoder.get_width(), image_height = decoder.get_height();
3174
+ *width = image_width;
3175
+ *height = image_height;
3176
+ *actual_comps = decoder.get_num_components();
3177
+
3178
+ if (decoder.begin_decoding() != JPGD_SUCCESS)
3179
+ return NULL;
3180
+
3181
+ const int dst_bpl = image_width * req_comps;
3182
+
3183
+ uint8 *pImage_data = (uint8*)jpgd_malloc(dst_bpl * image_height);
3184
+ if (!pImage_data)
3185
+ return NULL;
3186
+
3187
+ for (int y = 0; y < image_height; y++)
3188
+ {
3189
+ const uint8* pScan_line = 0;
3190
+ uint scan_line_len;
3191
+ if (decoder.decode((const void**)&pScan_line, &scan_line_len) != JPGD_SUCCESS)
3192
+ {
3193
+ jpgd_free(pImage_data);
3194
+ return NULL;
3195
+ }
3196
+
3197
+ uint8 *pDst = pImage_data + y * dst_bpl;
3198
+
3199
+ if (((req_comps == 4) && (decoder.get_num_components() == 3)) ||
3200
+ ((req_comps == 1) && (decoder.get_num_components() == 1)))
3201
+ {
3202
+ memcpy(pDst, pScan_line, dst_bpl);
3203
+ }
3204
+ else if (decoder.get_num_components() == 1)
3205
+ {
3206
+ if (req_comps == 3)
3207
+ {
3208
+ for (int x = 0; x < image_width; x++)
3209
+ {
3210
+ uint8 luma = pScan_line[x];
3211
+ pDst[0] = luma;
3212
+ pDst[1] = luma;
3213
+ pDst[2] = luma;
3214
+ pDst += 3;
3215
+ }
3216
+ }
3217
+ else
3218
+ {
3219
+ for (int x = 0; x < image_width; x++)
3220
+ {
3221
+ uint8 luma = pScan_line[x];
3222
+ pDst[0] = luma;
3223
+ pDst[1] = luma;
3224
+ pDst[2] = luma;
3225
+ pDst[3] = 255;
3226
+ pDst += 4;
3227
+ }
3228
+ }
3229
+ }
3230
+ else if (decoder.get_num_components() == 3)
3231
+ {
3232
+ if (req_comps == 1)
3233
+ {
3234
+ const int YR = 19595, YG = 38470, YB = 7471;
3235
+ for (int x = 0; x < image_width; x++)
3236
+ {
3237
+ int r = pScan_line[x*4+0];
3238
+ int g = pScan_line[x*4+1];
3239
+ int b = pScan_line[x*4+2];
3240
+ *pDst++ = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16);
3241
+ }
3242
+ }
3243
+ else
3244
+ {
3245
+ for (int x = 0; x < image_width; x++)
3246
+ {
3247
+ pDst[0] = pScan_line[x*4+0];
3248
+ pDst[1] = pScan_line[x*4+1];
3249
+ pDst[2] = pScan_line[x*4+2];
3250
+ pDst += 3;
3251
+ }
3252
+ }
3253
+ }
3254
+ }
3255
+
3256
+ return pImage_data;
3257
+ }
3258
+
3259
+ // BEGIN EPIC MOD
3260
+ unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps, int format)
3261
+ {
3262
+ jpg_format = (ERGBFormatJPG)format;
3263
+ // EMD EPIC MOD
3264
+ jpgd::jpeg_decoder_mem_stream mem_stream(pSrc_data, src_data_size);
3265
+ return decompress_jpeg_image_from_stream(&mem_stream, width, height, actual_comps, req_comps);
3266
+ }
3267
+
3268
+ unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename, int *width, int *height, int *actual_comps, int req_comps)
3269
+ {
3270
+ jpgd::jpeg_decoder_file_stream file_stream;
3271
+ if (!file_stream.open(pSrc_filename))
3272
+ return NULL;
3273
+ return decompress_jpeg_image_from_stream(&file_stream, width, height, actual_comps, req_comps);
3274
+ }
3275
+
3276
+ } // namespace jpgd
crazy_functions/test_project/cpp/libJPG/jpgd.h ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // jpgd.h - C++ class for JPEG decompression.
2
+ // Public domain, Rich Geldreich <richgel99@gmail.com>
3
+ #ifndef JPEG_DECODER_H
4
+ #define JPEG_DECODER_H
5
+
6
+ #include <stdlib.h>
7
+ #include <stdio.h>
8
+ #include <setjmp.h>
9
+
10
+ namespace jpgd
11
+ {
12
+ typedef unsigned char uint8;
13
+ typedef signed short int16;
14
+ typedef unsigned short uint16;
15
+ typedef unsigned int uint;
16
+ typedef signed int int32;
17
+
18
+ // Loads a JPEG image from a memory buffer or a file.
19
+ // req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA).
20
+ // On return, width/height will be set to the image's dimensions, and actual_comps will be set to the either 1 (grayscale) or 3 (RGB).
21
+ // Notes: For more control over where and how the source data is read, see the decompress_jpeg_image_from_stream() function below, or call the jpeg_decoder class directly.
22
+ // Requesting a 8 or 32bpp image is currently a little faster than 24bpp because the jpeg_decoder class itself currently always unpacks to either 8 or 32bpp.
23
+ // BEGIN EPIC MOD
24
+ //unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps);
25
+ unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps, int format);
26
+ // END EPIC MOD
27
+ unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename, int *width, int *height, int *actual_comps, int req_comps);
28
+
29
+ // Success/failure error codes.
30
+ enum jpgd_status
31
+ {
32
+ JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1,
33
+ JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE,
34
+ JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS,
35
+ JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH,
36
+ JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER,
37
+ JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS,
38
+ JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE,
39
+ JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER, JPGD_ASSERTION_ERROR,
40
+ JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM
41
+ };
42
+
43
+ // Input stream interface.
44
+ // Derive from this class to read input data from sources other than files or memory. Set m_eof_flag to true when no more data is available.
45
+ // The decoder is rather greedy: it will keep on calling this method until its internal input buffer is full, or until the EOF flag is set.
46
+ // It the input stream contains data after the JPEG stream's EOI (end of image) marker it will probably be pulled into the internal buffer.
47
+ // Call the get_total_bytes_read() method to determine the actual size of the JPEG stream after successful decoding.
48
+ class jpeg_decoder_stream
49
+ {
50
+ public:
51
+ jpeg_decoder_stream() { }
52
+ virtual ~jpeg_decoder_stream() { }
53
+
54
+ // The read() method is called when the internal input buffer is empty.
55
+ // Parameters:
56
+ // pBuf - input buffer
57
+ // max_bytes_to_read - maximum bytes that can be written to pBuf
58
+ // pEOF_flag - set this to true if at end of stream (no more bytes remaining)
59
+ // Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0).
60
+ // Notes: This method will be called in a loop until you set *pEOF_flag to true or the internal buffer is full.
61
+ virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) = 0;
62
+ };
63
+
64
+ // stdio FILE stream class.
65
+ class jpeg_decoder_file_stream : public jpeg_decoder_stream
66
+ {
67
+ jpeg_decoder_file_stream(const jpeg_decoder_file_stream &);
68
+ jpeg_decoder_file_stream &operator =(const jpeg_decoder_file_stream &);
69
+
70
+ FILE *m_pFile;
71
+ bool m_eof_flag, m_error_flag;
72
+
73
+ public:
74
+ jpeg_decoder_file_stream();
75
+ virtual ~jpeg_decoder_file_stream();
76
+
77
+ bool open(const char *Pfilename);
78
+ void close();
79
+
80
+ virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
81
+ };
82
+
83
+ // Memory stream class.
84
+ class jpeg_decoder_mem_stream : public jpeg_decoder_stream
85
+ {
86
+ const uint8 *m_pSrc_data;
87
+ uint m_ofs, m_size;
88
+
89
+ public:
90
+ jpeg_decoder_mem_stream() : m_pSrc_data(NULL), m_ofs(0), m_size(0) { }
91
+ jpeg_decoder_mem_stream(const uint8 *pSrc_data, uint size) : m_pSrc_data(pSrc_data), m_ofs(0), m_size(size) { }
92
+
93
+ virtual ~jpeg_decoder_mem_stream() { }
94
+
95
+ bool open(const uint8 *pSrc_data, uint size);
96
+ void close() { m_pSrc_data = NULL; m_ofs = 0; m_size = 0; }
97
+
98
+ virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
99
+ };
100
+
101
+ // Loads JPEG file from a jpeg_decoder_stream.
102
+ unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream, int *width, int *height, int *actual_comps, int req_comps);
103
+
104
+ enum
105
+ {
106
+ JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4,
107
+ JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 8192, JPGD_MAX_HEIGHT = 16384, JPGD_MAX_WIDTH = 16384
108
+ };
109
+
110
+ typedef int16 jpgd_quant_t;
111
+ typedef int16 jpgd_block_t;
112
+
113
+ class jpeg_decoder
114
+ {
115
+ public:
116
+ // Call get_error_code() after constructing to determine if the stream is valid or not. You may call the get_width(), get_height(), etc.
117
+ // methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline.
118
+ jpeg_decoder(jpeg_decoder_stream *pStream);
119
+
120
+ ~jpeg_decoder();
121
+
122
+ // Call this method after constructing the object to begin decompression.
123
+ // If JPGD_SUCCESS is returned you may then call decode() on each scanline.
124
+ int begin_decoding();
125
+
126
+ // Returns the next scan line.
127
+ // For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (get_bytes_per_pixel() will return 1).
128
+ // Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and get_bytes_per_pixel() will return 4).
129
+ // Returns JPGD_SUCCESS if a scan line has been returned.
130
+ // Returns JPGD_DONE if all scan lines have been returned.
131
+ // Returns JPGD_FAILED if an error occurred. Call get_error_code() for a more info.
132
+ int decode(const void** pScan_line, uint* pScan_line_len);
133
+
134
+ inline jpgd_status get_error_code() const { return m_error_code; }
135
+
136
+ inline int get_width() const { return m_image_x_size; }
137
+ inline int get_height() const { return m_image_y_size; }
138
+
139
+ inline int get_num_components() const { return m_comps_in_frame; }
140
+
141
+ inline int get_bytes_per_pixel() const { return m_dest_bytes_per_pixel; }
142
+ inline int get_bytes_per_scan_line() const { return m_image_x_size * get_bytes_per_pixel(); }
143
+
144
+ // Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file).
145
+ inline int get_total_bytes_read() const { return m_total_bytes_read; }
146
+
147
+ private:
148
+ jpeg_decoder(const jpeg_decoder &);
149
+ jpeg_decoder &operator =(const jpeg_decoder &);
150
+
151
+ typedef void (*pDecode_block_func)(jpeg_decoder *, int, int, int);
152
+
153
+ struct huff_tables
154
+ {
155
+ bool ac_table;
156
+ uint look_up[256];
157
+ uint look_up2[256];
158
+ uint8 code_size[256];
159
+ uint tree[512];
160
+ };
161
+
162
+ struct coeff_buf
163
+ {
164
+ uint8 *pData;
165
+ int block_num_x, block_num_y;
166
+ int block_len_x, block_len_y;
167
+ int block_size;
168
+ };
169
+
170
+ struct mem_block
171
+ {
172
+ mem_block *m_pNext;
173
+ size_t m_used_count;
174
+ size_t m_size;
175
+ char m_data[1];
176
+ };
177
+
178
+ jmp_buf m_jmp_state;
179
+ mem_block *m_pMem_blocks;
180
+ int m_image_x_size;
181
+ int m_image_y_size;
182
+ jpeg_decoder_stream *m_pStream;
183
+ int m_progressive_flag;
184
+ uint8 m_huff_ac[JPGD_MAX_HUFF_TABLES];
185
+ uint8* m_huff_num[JPGD_MAX_HUFF_TABLES]; // pointer to number of Huffman codes per bit size
186
+ uint8* m_huff_val[JPGD_MAX_HUFF_TABLES]; // pointer to Huffman codes per bit size
187
+ jpgd_quant_t* m_quant[JPGD_MAX_QUANT_TABLES]; // pointer to quantization tables
188
+ int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported)
189
+ int m_comps_in_frame; // # of components in frame
190
+ int m_comp_h_samp[JPGD_MAX_COMPONENTS]; // component's horizontal sampling factor
191
+ int m_comp_v_samp[JPGD_MAX_COMPONENTS]; // component's vertical sampling factor
192
+ int m_comp_quant[JPGD_MAX_COMPONENTS]; // component's quantization table selector
193
+ int m_comp_ident[JPGD_MAX_COMPONENTS]; // component's ID
194
+ int m_comp_h_blocks[JPGD_MAX_COMPONENTS];
195
+ int m_comp_v_blocks[JPGD_MAX_COMPONENTS];
196
+ int m_comps_in_scan; // # of components in scan
197
+ int m_comp_list[JPGD_MAX_COMPS_IN_SCAN]; // components in this scan
198
+ int m_comp_dc_tab[JPGD_MAX_COMPONENTS]; // component's DC Huffman coding table selector
199
+ int m_comp_ac_tab[JPGD_MAX_COMPONENTS]; // component's AC Huffman coding table selector
200
+ int m_spectral_start; // spectral selection start
201
+ int m_spectral_end; // spectral selection end
202
+ int m_successive_low; // successive approximation low
203
+ int m_successive_high; // successive approximation high
204
+ int m_max_mcu_x_size; // MCU's max. X size in pixels
205
+ int m_max_mcu_y_size; // MCU's max. Y size in pixels
206
+ int m_blocks_per_mcu;
207
+ int m_max_blocks_per_row;
208
+ int m_mcus_per_row, m_mcus_per_col;
209
+ int m_mcu_org[JPGD_MAX_BLOCKS_PER_MCU];
210
+ int m_total_lines_left; // total # lines left in image
211
+ int m_mcu_lines_left; // total # lines left in this MCU
212
+ int m_real_dest_bytes_per_scan_line;
213
+ int m_dest_bytes_per_scan_line; // rounded up
214
+ int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y)
215
+ huff_tables* m_pHuff_tabs[JPGD_MAX_HUFF_TABLES];
216
+ coeff_buf* m_dc_coeffs[JPGD_MAX_COMPONENTS];
217
+ coeff_buf* m_ac_coeffs[JPGD_MAX_COMPONENTS];
218
+ int m_eob_run;
219
+ int m_block_y_mcu[JPGD_MAX_COMPONENTS];
220
+ uint8* m_pIn_buf_ofs;
221
+ int m_in_buf_left;
222
+ int m_tem_flag;
223
+ bool m_eof_flag;
224
+ uint8 m_in_buf_pad_start[128];
225
+ uint8 m_in_buf[JPGD_IN_BUF_SIZE + 128];
226
+ uint8 m_in_buf_pad_end[128];
227
+ int m_bits_left;
228
+ uint m_bit_buf;
229
+ int m_restart_interval;
230
+ int m_restarts_left;
231
+ int m_next_restart_num;
232
+ int m_max_mcus_per_row;
233
+ int m_max_blocks_per_mcu;
234
+ int m_expanded_blocks_per_mcu;
235
+ int m_expanded_blocks_per_row;
236
+ int m_expanded_blocks_per_component;
237
+ bool m_freq_domain_chroma_upsample;
238
+ int m_max_mcus_per_col;
239
+ uint m_last_dc_val[JPGD_MAX_COMPONENTS];
240
+ jpgd_block_t* m_pMCU_coefficients;
241
+ int m_mcu_block_max_zag[JPGD_MAX_BLOCKS_PER_MCU];
242
+ uint8* m_pSample_buf;
243
+ int m_crr[256];
244
+ int m_cbb[256];
245
+ int m_crg[256];
246
+ int m_cbg[256];
247
+ uint8* m_pScan_line_0;
248
+ uint8* m_pScan_line_1;
249
+ jpgd_status m_error_code;
250
+ bool m_ready_flag;
251
+ int m_total_bytes_read;
252
+
253
+ void free_all_blocks();
254
+ // BEGIN EPIC MOD
255
+ UE_NORETURN void stop_decoding(jpgd_status status);
256
+ // END EPIC MOD
257
+ void *alloc(size_t n, bool zero = false);
258
+ void word_clear(void *p, uint16 c, uint n);
259
+ void prep_in_buffer();
260
+ void read_dht_marker();
261
+ void read_dqt_marker();
262
+ void read_sof_marker();
263
+ void skip_variable_marker();
264
+ void read_dri_marker();
265
+ void read_sos_marker();
266
+ int next_marker();
267
+ int process_markers();
268
+ void locate_soi_marker();
269
+ void locate_sof_marker();
270
+ int locate_sos_marker();
271
+ void init(jpeg_decoder_stream * pStream);
272
+ void create_look_ups();
273
+ void fix_in_buffer();
274
+ void transform_mcu(int mcu_row);
275
+ void transform_mcu_expand(int mcu_row);
276
+ coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y);
277
+ inline jpgd_block_t *coeff_buf_getp(coeff_buf *cb, int block_x, int block_y);
278
+ void load_next_row();
279
+ void decode_next_row();
280
+ void make_huff_table(int index, huff_tables *pH);
281
+ void check_quant_tables();
282
+ void check_huff_tables();
283
+ void calc_mcu_block_order();
284
+ int init_scan();
285
+ void init_frame();
286
+ void process_restart();
287
+ void decode_scan(pDecode_block_func decode_block_func);
288
+ void init_progressive();
289
+ void init_sequential();
290
+ void decode_start();
291
+ void decode_init(jpeg_decoder_stream * pStream);
292
+ void H2V2Convert();
293
+ void H2V1Convert();
294
+ void H1V2Convert();
295
+ void H1V1Convert();
296
+ void gray_convert();
297
+ void expanded_convert();
298
+ void find_eoi();
299
+ inline uint get_char();
300
+ inline uint get_char(bool *pPadding_flag);
301
+ inline void stuff_char(uint8 q);
302
+ inline uint8 get_octet();
303
+ inline uint get_bits(int num_bits);
304
+ inline uint get_bits_no_markers(int numbits);
305
+ inline int huff_decode(huff_tables *pH);
306
+ inline int huff_decode(huff_tables *pH, int& extrabits);
307
+ static inline uint8 clamp(int i);
308
+ static void decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
309
+ static void decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
310
+ static void decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
311
+ static void decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
312
+ };
313
+
314
+ } // namespace jpgd
315
+
316
+ #endif // JPEG_DECODER_H
crazy_functions/test_project/cpp/libJPG/jpge.cpp ADDED
@@ -0,0 +1,1049 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // jpge.cpp - C++ class for JPEG compression.
2
+ // Public domain, Rich Geldreich <richgel99@gmail.com>
3
+ // v1.01, Dec. 18, 2010 - Initial release
4
+ // v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.)
5
+ // v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc.
6
+ // Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03).
7
+ // v1.04, May. 19, 2012: Forgot to set m_pFile ptr to NULL in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug.
8
+ // Code tweaks to fix VS2008 static code analysis warnings (all looked harmless).
9
+ // Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02.
10
+
11
+ #include "jpge.h"
12
+
13
+ #include <stdlib.h>
14
+ #include <string.h>
15
+ #if PLATFORM_WINDOWS
16
+ #include <malloc.h>
17
+ #endif
18
+
19
+ #define JPGE_MAX(a,b) (((a)>(b))?(a):(b))
20
+ #define JPGE_MIN(a,b) (((a)<(b))?(a):(b))
21
+
22
+ namespace jpge {
23
+
24
+ static inline void *jpge_malloc(size_t nSize) { return FMemory::Malloc(nSize); }
25
+ static inline void jpge_free(void *p) { FMemory::Free(p);; }
26
+
27
+ // Various JPEG enums and tables.
28
+ enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 };
29
+ enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 };
30
+
31
+ static uint8 s_zag[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 };
32
+ static int16 s_std_lum_quant[64] = { 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 };
33
+ static int16 s_std_croma_quant[64] = { 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 };
34
+ static uint8 s_dc_lum_bits[17] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 };
35
+ static uint8 s_dc_lum_val[DC_LUM_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
36
+ static uint8 s_ac_lum_bits[17] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d };
37
+ static uint8 s_ac_lum_val[AC_LUM_CODES] =
38
+ {
39
+ 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,
40
+ 0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,
41
+ 0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
42
+ 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,
43
+ 0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
44
+ 0xf9,0xfa
45
+ };
46
+ static uint8 s_dc_chroma_bits[17] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 };
47
+ static uint8 s_dc_chroma_val[DC_CHROMA_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
48
+ static uint8 s_ac_chroma_bits[17] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 };
49
+ static uint8 s_ac_chroma_val[AC_CHROMA_CODES] =
50
+ {
51
+ 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,
52
+ 0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,
53
+ 0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
54
+ 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,
55
+ 0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
56
+ 0xf9,0xfa
57
+ };
58
+
59
+ // Low-level helper functions.
60
+ template <class T> inline void clear_obj(T &obj) { memset(&obj, 0, sizeof(obj)); }
61
+
62
+ const int YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329;
63
+ static inline uint8 clamp(int i) { if (static_cast<uint>(i) > 255U) { if (i < 0) i = 0; else if (i > 255) i = 255; } return static_cast<uint8>(i); }
64
+
65
+ static void RGB_to_YCC(uint8* pDst, const uint8 *pSrc, int num_pixels)
66
+ {
67
+ for ( ; num_pixels; pDst += 3, pSrc += 3, num_pixels--)
68
+ {
69
+ const int r = pSrc[0], g = pSrc[1], b = pSrc[2];
70
+ pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16);
71
+ pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16));
72
+ pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16));
73
+ }
74
+ }
75
+
76
+ static void RGB_to_Y(uint8* pDst, const uint8 *pSrc, int num_pixels)
77
+ {
78
+ for ( ; num_pixels; pDst++, pSrc += 3, num_pixels--)
79
+ pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16);
80
+ }
81
+
82
+ static void RGBA_to_YCC(uint8* pDst, const uint8 *pSrc, int num_pixels)
83
+ {
84
+ for ( ; num_pixels; pDst += 3, pSrc += 4, num_pixels--)
85
+ {
86
+ const int r = pSrc[0], g = pSrc[1], b = pSrc[2];
87
+ pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16);
88
+ pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16));
89
+ pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16));
90
+ }
91
+ }
92
+
93
+ static void RGBA_to_Y(uint8* pDst, const uint8 *pSrc, int num_pixels)
94
+ {
95
+ for ( ; num_pixels; pDst++, pSrc += 4, num_pixels--)
96
+ pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16);
97
+ }
98
+
99
+ static void Y_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels)
100
+ {
101
+ for( ; num_pixels; pDst += 3, pSrc++, num_pixels--) { pDst[0] = pSrc[0]; pDst[1] = 128; pDst[2] = 128; }
102
+ }
103
+
104
+ // Forward DCT - DCT derived from jfdctint.
105
+ #define CONST_BITS 13
106
+ #define ROW_BITS 2
107
+ #define DCT_DESCALE(x, n) (((x) + (((int32)1) << ((n) - 1))) >> (n))
108
+ #define DCT_MUL(var, c) (static_cast<int16>(var) * static_cast<int32>(c))
109
+ #define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7) \
110
+ int32 t0 = s0 + s7, t7 = s0 - s7, t1 = s1 + s6, t6 = s1 - s6, t2 = s2 + s5, t5 = s2 - s5, t3 = s3 + s4, t4 = s3 - s4; \
111
+ int32 t10 = t0 + t3, t13 = t0 - t3, t11 = t1 + t2, t12 = t1 - t2; \
112
+ int32 u1 = DCT_MUL(t12 + t13, 4433); \
113
+ s2 = u1 + DCT_MUL(t13, 6270); \
114
+ s6 = u1 + DCT_MUL(t12, -15137); \
115
+ u1 = t4 + t7; \
116
+ int32 u2 = t5 + t6, u3 = t4 + t6, u4 = t5 + t7; \
117
+ int32 z5 = DCT_MUL(u3 + u4, 9633); \
118
+ t4 = DCT_MUL(t4, 2446); t5 = DCT_MUL(t5, 16819); \
119
+ t6 = DCT_MUL(t6, 25172); t7 = DCT_MUL(t7, 12299); \
120
+ u1 = DCT_MUL(u1, -7373); u2 = DCT_MUL(u2, -20995); \
121
+ u3 = DCT_MUL(u3, -16069); u4 = DCT_MUL(u4, -3196); \
122
+ u3 += z5; u4 += z5; \
123
+ s0 = t10 + t11; s1 = t7 + u1 + u4; s3 = t6 + u2 + u3; s4 = t10 - t11; s5 = t5 + u2 + u4; s7 = t4 + u1 + u3;
124
+
125
+ static void DCT2D(int32 *p)
126
+ {
127
+ int32 c, *q = p;
128
+ for (c = 7; c >= 0; c--, q += 8)
129
+ {
130
+ int32 s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7];
131
+ DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
132
+ q[0] = s0 << ROW_BITS; q[1] = DCT_DESCALE(s1, CONST_BITS-ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS-ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS-ROW_BITS);
133
+ q[4] = s4 << ROW_BITS; q[5] = DCT_DESCALE(s5, CONST_BITS-ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS-ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS-ROW_BITS);
134
+ }
135
+ for (q = p, c = 7; c >= 0; c--, q++)
136
+ {
137
+ int32 s0 = q[0*8], s1 = q[1*8], s2 = q[2*8], s3 = q[3*8], s4 = q[4*8], s5 = q[5*8], s6 = q[6*8], s7 = q[7*8];
138
+ DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
139
+ q[0*8] = DCT_DESCALE(s0, ROW_BITS+3); q[1*8] = DCT_DESCALE(s1, CONST_BITS+ROW_BITS+3); q[2*8] = DCT_DESCALE(s2, CONST_BITS+ROW_BITS+3); q[3*8] = DCT_DESCALE(s3, CONST_BITS+ROW_BITS+3);
140
+ q[4*8] = DCT_DESCALE(s4, ROW_BITS+3); q[5*8] = DCT_DESCALE(s5, CONST_BITS+ROW_BITS+3); q[6*8] = DCT_DESCALE(s6, CONST_BITS+ROW_BITS+3); q[7*8] = DCT_DESCALE(s7, CONST_BITS+ROW_BITS+3);
141
+ }
142
+ }
143
+
144
+ struct sym_freq { uint m_key, m_sym_index; };
145
+
146
+ // Radix sorts sym_freq[] array by 32-bit key m_key. Returns ptr to sorted values.
147
+ static inline sym_freq* radix_sort_syms(uint num_syms, sym_freq* pSyms0, sym_freq* pSyms1)
148
+ {
149
+ const uint cMaxPasses = 4;
150
+ uint32 hist[256 * cMaxPasses]; clear_obj(hist);
151
+ for (uint i = 0; i < num_syms; i++) { uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; hist[256*2 + ((freq >> 16) & 0xFF)]++; hist[256*3 + ((freq >> 24) & 0xFF)]++; }
152
+ sym_freq* pCur_syms = pSyms0, *pNew_syms = pSyms1;
153
+ uint total_passes = cMaxPasses; while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--;
154
+ for (uint pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)
155
+ {
156
+ const uint32* pHist = &hist[pass << 8];
157
+ uint offsets[256], cur_ofs = 0;
158
+ for (uint i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; }
159
+ for (uint i = 0; i < num_syms; i++)
160
+ pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];
161
+ sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t;
162
+ }
163
+ return pCur_syms;
164
+ }
165
+
166
+ // calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
167
+ static void calculate_minimum_redundancy(sym_freq *A, int n)
168
+ {
169
+ int root, leaf, next, avbl, used, dpth;
170
+ if (n==0) return; else if (n==1) { A[0].m_key = 1; return; }
171
+ A[0].m_key += A[1].m_key; root = 0; leaf = 2;
172
+ for (next=1; next < n-1; next++)
173
+ {
174
+ if (leaf>=n || A[root].m_key<A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = next; } else A[next].m_key = A[leaf++].m_key;
175
+ if (leaf>=n || (root<next && A[root].m_key<A[leaf].m_key)) { A[next].m_key += A[root].m_key; A[root++].m_key = next; } else A[next].m_key += A[leaf++].m_key;
176
+ }
177
+ A[n-2].m_key = 0;
178
+ for (next=n-3; next>=0; next--) A[next].m_key = A[A[next].m_key].m_key+1;
179
+ avbl = 1; used = dpth = 0; root = n-2; next = n-1;
180
+ while (avbl>0)
181
+ {
182
+ while (root>=0 && (int)A[root].m_key==dpth) { used++; root--; }
183
+ while (avbl>used) { A[next--].m_key = dpth; avbl--; }
184
+ avbl = 2*used; dpth++; used = 0;
185
+ }
186
+ }
187
+
188
+ // Limits canonical Huffman code table's max code size to max_code_size.
189
+ static void huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size)
190
+ {
191
+ if (code_list_len <= 1) return;
192
+
193
+ for (int i = max_code_size + 1; i <= MAX_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i];
194
+
195
+ uint32 total = 0;
196
+ for (int i = max_code_size; i > 0; i--)
197
+ total += (((uint32)pNum_codes[i]) << (max_code_size - i));
198
+
199
+ while (total != (1UL << max_code_size))
200
+ {
201
+ pNum_codes[max_code_size]--;
202
+ for (int i = max_code_size - 1; i > 0; i--)
203
+ {
204
+ if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; }
205
+ }
206
+ total--;
207
+ }
208
+ }
209
+
210
+ // Generates an optimized offman table.
211
+ void jpeg_encoder::optimize_huffman_table(int table_num, int table_len)
212
+ {
213
+ sym_freq syms0[MAX_HUFF_SYMBOLS], syms1[MAX_HUFF_SYMBOLS];
214
+ syms0[0].m_key = 1; syms0[0].m_sym_index = 0; // dummy symbol, assures that no valid code contains all 1's
215
+ int num_used_syms = 1;
216
+ const uint32 *pSym_count = &m_huff_count[table_num][0];
217
+ for (int i = 0; i < table_len; i++)
218
+ if (pSym_count[i]) { syms0[num_used_syms].m_key = pSym_count[i]; syms0[num_used_syms++].m_sym_index = i + 1; }
219
+ sym_freq* pSyms = radix_sort_syms(num_used_syms, syms0, syms1);
220
+ calculate_minimum_redundancy(pSyms, num_used_syms);
221
+
222
+ // Count the # of symbols of each code size.
223
+ int num_codes[1 + MAX_HUFF_CODESIZE]; clear_obj(num_codes);
224
+ for (int i = 0; i < num_used_syms; i++)
225
+ num_codes[pSyms[i].m_key]++;
226
+
227
+ const uint JPGE_CODE_SIZE_LIMIT = 16; // the maximum possible size of a JPEG Huffman code (valid range is [9,16] - 9 vs. 8 because of the dummy symbol)
228
+ huffman_enforce_max_code_size(num_codes, num_used_syms, JPGE_CODE_SIZE_LIMIT);
229
+
230
+ // Compute m_huff_bits array, which contains the # of symbols per code size.
231
+ clear_obj(m_huff_bits[table_num]);
232
+ for (int i = 1; i <= (int)JPGE_CODE_SIZE_LIMIT; i++)
233
+ m_huff_bits[table_num][i] = static_cast<uint8>(num_codes[i]);
234
+
235
+ // Remove the dummy symbol added above, which must be in largest bucket.
236
+ for (int i = JPGE_CODE_SIZE_LIMIT; i >= 1; i--)
237
+ {
238
+ if (m_huff_bits[table_num][i]) { m_huff_bits[table_num][i]--; break; }
239
+ }
240
+
241
+ // Compute the m_huff_val array, which contains the symbol indices sorted by code size (smallest to largest).
242
+ for (int i = num_used_syms - 1; i >= 1; i--)
243
+ m_huff_val[table_num][num_used_syms - 1 - i] = static_cast<uint8>(pSyms[i].m_sym_index - 1);
244
+ }
245
+
246
+ // JPEG marker generation.
247
+ void jpeg_encoder::emit_byte(uint8 i)
248
+ {
249
+ m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_obj(i);
250
+ }
251
+
252
+ void jpeg_encoder::emit_word(uint i)
253
+ {
254
+ emit_byte(uint8(i >> 8)); emit_byte(uint8(i & 0xFF));
255
+ }
256
+
257
+ void jpeg_encoder::emit_marker(int marker)
258
+ {
259
+ emit_byte(uint8(0xFF)); emit_byte(uint8(marker));
260
+ }
261
+
262
+ // Emit JFIF marker
263
+ void jpeg_encoder::emit_jfif_app0()
264
+ {
265
+ emit_marker(M_APP0);
266
+ emit_word(2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1);
267
+ emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */
268
+ emit_byte(0);
269
+ emit_byte(1); /* Major version */
270
+ emit_byte(1); /* Minor version */
271
+ emit_byte(0); /* Density unit */
272
+ emit_word(1);
273
+ emit_word(1);
274
+ emit_byte(0); /* No thumbnail image */
275
+ emit_byte(0);
276
+ }
277
+
278
+ // Emit quantization tables
279
+ void jpeg_encoder::emit_dqt()
280
+ {
281
+ for (int i = 0; i < ((m_num_components == 3) ? 2 : 1); i++)
282
+ {
283
+ emit_marker(M_DQT);
284
+ emit_word(64 + 1 + 2);
285
+ emit_byte(static_cast<uint8>(i));
286
+ for (int j = 0; j < 64; j++)
287
+ emit_byte(static_cast<uint8>(m_quantization_tables[i][j]));
288
+ }
289
+ }
290
+
291
+ // Emit start of frame marker
292
+ void jpeg_encoder::emit_sof()
293
+ {
294
+ emit_marker(M_SOF0); /* baseline */
295
+ emit_word(3 * m_num_components + 2 + 5 + 1);
296
+ emit_byte(8); /* precision */
297
+ emit_word(m_image_y);
298
+ emit_word(m_image_x);
299
+ emit_byte(m_num_components);
300
+ for (int i = 0; i < m_num_components; i++)
301
+ {
302
+ emit_byte(static_cast<uint8>(i + 1)); /* component ID */
303
+ emit_byte((m_comp_h_samp[i] << 4) + m_comp_v_samp[i]); /* h and v sampling */
304
+ emit_byte(i > 0); /* quant. table num */
305
+ }
306
+ }
307
+
308
+ // Emit Huffman table.
309
+ void jpeg_encoder::emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag)
310
+ {
311
+ emit_marker(M_DHT);
312
+
313
+ int length = 0;
314
+ for (int i = 1; i <= 16; i++)
315
+ length += bits[i];
316
+
317
+ emit_word(length + 2 + 1 + 16);
318
+ emit_byte(static_cast<uint8>(index + (ac_flag << 4)));
319
+
320
+ for (int i = 1; i <= 16; i++)
321
+ emit_byte(bits[i]);
322
+
323
+ for (int i = 0; i < length; i++)
324
+ emit_byte(val[i]);
325
+ }
326
+
327
+ // Emit all Huffman tables.
328
+ void jpeg_encoder::emit_dhts()
329
+ {
330
+ emit_dht(m_huff_bits[0+0], m_huff_val[0+0], 0, false);
331
+ emit_dht(m_huff_bits[2+0], m_huff_val[2+0], 0, true);
332
+ if (m_num_components == 3)
333
+ {
334
+ emit_dht(m_huff_bits[0+1], m_huff_val[0+1], 1, false);
335
+ emit_dht(m_huff_bits[2+1], m_huff_val[2+1], 1, true);
336
+ }
337
+ }
338
+
339
+ // emit start of scan
340
+ void jpeg_encoder::emit_sos()
341
+ {
342
+ emit_marker(M_SOS);
343
+ emit_word(2 * m_num_components + 2 + 1 + 3);
344
+ emit_byte(m_num_components);
345
+ for (int i = 0; i < m_num_components; i++)
346
+ {
347
+ emit_byte(static_cast<uint8>(i + 1));
348
+ if (i == 0)
349
+ emit_byte((0 << 4) + 0);
350
+ else
351
+ emit_byte((1 << 4) + 1);
352
+ }
353
+ emit_byte(0); /* spectral selection */
354
+ emit_byte(63);
355
+ emit_byte(0);
356
+ }
357
+
358
+ // Emit all markers at beginning of image file.
359
+ void jpeg_encoder::emit_markers()
360
+ {
361
+ emit_marker(M_SOI);
362
+ emit_jfif_app0();
363
+ emit_dqt();
364
+ emit_sof();
365
+ emit_dhts();
366
+ emit_sos();
367
+ }
368
+
369
+ // Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays.
370
+ void jpeg_encoder::compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val)
371
+ {
372
+ int i, l, last_p, si;
373
+ uint8 huff_size[257];
374
+ uint huff_code[257];
375
+ uint code;
376
+
377
+ int p = 0;
378
+ for (l = 1; l <= 16; l++)
379
+ for (i = 1; i <= bits[l]; i++)
380
+ huff_size[p++] = (char)l;
381
+
382
+ huff_size[p] = 0; last_p = p; // write sentinel
383
+
384
+ code = 0; si = huff_size[0]; p = 0;
385
+
386
+ while (huff_size[p])
387
+ {
388
+ while (huff_size[p] == si)
389
+ huff_code[p++] = code++;
390
+ code <<= 1;
391
+ si++;
392
+ }
393
+
394
+ memset(codes, 0, sizeof(codes[0])*256);
395
+ memset(code_sizes, 0, sizeof(code_sizes[0])*256);
396
+ for (p = 0; p < last_p; p++)
397
+ {
398
+ codes[val[p]] = huff_code[p];
399
+ code_sizes[val[p]] = huff_size[p];
400
+ }
401
+ }
402
+
403
+ // Quantization table generation.
404
+ void jpeg_encoder::compute_quant_table(int32 *pDst, int16 *pSrc)
405
+ {
406
+ int32 q;
407
+ if (m_params.m_quality < 50)
408
+ q = 5000 / m_params.m_quality;
409
+ else
410
+ q = 200 - m_params.m_quality * 2;
411
+ for (int i = 0; i < 64; i++)
412
+ {
413
+ int32 j = *pSrc++; j = (j * q + 50L) / 100L;
414
+ *pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255);
415
+ }
416
+ }
417
+
418
+ // Higher-level methods.
419
+ void jpeg_encoder::first_pass_init()
420
+ {
421
+ m_bit_buffer = 0; m_bits_in = 0;
422
+ memset(m_last_dc_val, 0, 3 * sizeof(m_last_dc_val[0]));
423
+ m_mcu_y_ofs = 0;
424
+ m_pass_num = 1;
425
+ }
426
+
427
+ bool jpeg_encoder::second_pass_init()
428
+ {
429
+ compute_huffman_table(&m_huff_codes[0+0][0], &m_huff_code_sizes[0+0][0], m_huff_bits[0+0], m_huff_val[0+0]);
430
+ compute_huffman_table(&m_huff_codes[2+0][0], &m_huff_code_sizes[2+0][0], m_huff_bits[2+0], m_huff_val[2+0]);
431
+ if (m_num_components > 1)
432
+ {
433
+ compute_huffman_table(&m_huff_codes[0+1][0], &m_huff_code_sizes[0+1][0], m_huff_bits[0+1], m_huff_val[0+1]);
434
+ compute_huffman_table(&m_huff_codes[2+1][0], &m_huff_code_sizes[2+1][0], m_huff_bits[2+1], m_huff_val[2+1]);
435
+ }
436
+ first_pass_init();
437
+ emit_markers();
438
+ m_pass_num = 2;
439
+ return true;
440
+ }
441
+
442
+ bool jpeg_encoder::jpg_open(int p_x_res, int p_y_res, int src_channels)
443
+ {
444
+ m_num_components = 3;
445
+ switch (m_params.m_subsampling)
446
+ {
447
+ case Y_ONLY:
448
+ {
449
+ m_num_components = 1;
450
+ m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
451
+ m_mcu_x = 8; m_mcu_y = 8;
452
+ break;
453
+ }
454
+ case H1V1:
455
+ {
456
+ m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
457
+ m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
458
+ m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
459
+ m_mcu_x = 8; m_mcu_y = 8;
460
+ break;
461
+ }
462
+ case H2V1:
463
+ {
464
+ m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1;
465
+ m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
466
+ m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
467
+ m_mcu_x = 16; m_mcu_y = 8;
468
+ break;
469
+ }
470
+ case H2V2:
471
+ {
472
+ m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2;
473
+ m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
474
+ m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
475
+ m_mcu_x = 16; m_mcu_y = 16;
476
+ }
477
+ }
478
+
479
+ m_image_x = p_x_res; m_image_y = p_y_res;
480
+ m_image_bpp = src_channels;
481
+ m_image_bpl = m_image_x * src_channels;
482
+ m_image_x_mcu = (m_image_x + m_mcu_x - 1) & (~(m_mcu_x - 1));
483
+ m_image_y_mcu = (m_image_y + m_mcu_y - 1) & (~(m_mcu_y - 1));
484
+ m_image_bpl_xlt = m_image_x * m_num_components;
485
+ m_image_bpl_mcu = m_image_x_mcu * m_num_components;
486
+ m_mcus_per_row = m_image_x_mcu / m_mcu_x;
487
+
488
+ if ((m_mcu_lines[0] = static_cast<uint8*>(jpge_malloc(m_image_bpl_mcu * m_mcu_y))) == NULL) return false;
489
+ for (int i = 1; i < m_mcu_y; i++)
490
+ m_mcu_lines[i] = m_mcu_lines[i-1] + m_image_bpl_mcu;
491
+
492
+ compute_quant_table(m_quantization_tables[0], s_std_lum_quant);
493
+ compute_quant_table(m_quantization_tables[1], m_params.m_no_chroma_discrim_flag ? s_std_lum_quant : s_std_croma_quant);
494
+
495
+ m_out_buf_left = JPGE_OUT_BUF_SIZE;
496
+ m_pOut_buf = m_out_buf;
497
+
498
+ if (m_params.m_two_pass_flag)
499
+ {
500
+ clear_obj(m_huff_count);
501
+ first_pass_init();
502
+ }
503
+ else
504
+ {
505
+ memcpy(m_huff_bits[0+0], s_dc_lum_bits, 17); memcpy(m_huff_val [0+0], s_dc_lum_val, DC_LUM_CODES);
506
+ memcpy(m_huff_bits[2+0], s_ac_lum_bits, 17); memcpy(m_huff_val [2+0], s_ac_lum_val, AC_LUM_CODES);
507
+ memcpy(m_huff_bits[0+1], s_dc_chroma_bits, 17); memcpy(m_huff_val [0+1], s_dc_chroma_val, DC_CHROMA_CODES);
508
+ memcpy(m_huff_bits[2+1], s_ac_chroma_bits, 17); memcpy(m_huff_val [2+1], s_ac_chroma_val, AC_CHROMA_CODES);
509
+ if (!second_pass_init()) return false; // in effect, skip over the first pass
510
+ }
511
+ return m_all_stream_writes_succeeded;
512
+ }
513
+
514
+ void jpeg_encoder::load_block_8_8_grey(int x)
515
+ {
516
+ uint8 *pSrc;
517
+ sample_array_t *pDst = m_sample_array;
518
+ x <<= 3;
519
+ for (int i = 0; i < 8; i++, pDst += 8)
520
+ {
521
+ pSrc = m_mcu_lines[i] + x;
522
+ pDst[0] = pSrc[0] - 128; pDst[1] = pSrc[1] - 128; pDst[2] = pSrc[2] - 128; pDst[3] = pSrc[3] - 128;
523
+ pDst[4] = pSrc[4] - 128; pDst[5] = pSrc[5] - 128; pDst[6] = pSrc[6] - 128; pDst[7] = pSrc[7] - 128;
524
+ }
525
+ }
526
+
527
+ void jpeg_encoder::load_block_8_8(int x, int y, int c)
528
+ {
529
+ uint8 *pSrc;
530
+ sample_array_t *pDst = m_sample_array;
531
+ x = (x * (8 * 3)) + c;
532
+ y <<= 3;
533
+ for (int i = 0; i < 8; i++, pDst += 8)
534
+ {
535
+ pSrc = m_mcu_lines[y + i] + x;
536
+ pDst[0] = pSrc[0 * 3] - 128; pDst[1] = pSrc[1 * 3] - 128; pDst[2] = pSrc[2 * 3] - 128; pDst[3] = pSrc[3 * 3] - 128;
537
+ pDst[4] = pSrc[4 * 3] - 128; pDst[5] = pSrc[5 * 3] - 128; pDst[6] = pSrc[6 * 3] - 128; pDst[7] = pSrc[7 * 3] - 128;
538
+ }
539
+ }
540
+
541
+ void jpeg_encoder::load_block_16_8(int x, int c)
542
+ {
543
+ uint8 *pSrc1, *pSrc2;
544
+ sample_array_t *pDst = m_sample_array;
545
+ x = (x * (16 * 3)) + c;
546
+ int a = 0, b = 2;
547
+ for (int i = 0; i < 16; i += 2, pDst += 8)
548
+ {
549
+ pSrc1 = m_mcu_lines[i + 0] + x;
550
+ pSrc2 = m_mcu_lines[i + 1] + x;
551
+ pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3] + pSrc2[ 0 * 3] + pSrc2[ 1 * 3] + a) >> 2) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3] + pSrc2[ 2 * 3] + pSrc2[ 3 * 3] + b) >> 2) - 128;
552
+ pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3] + pSrc2[ 4 * 3] + pSrc2[ 5 * 3] + a) >> 2) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3] + pSrc2[ 6 * 3] + pSrc2[ 7 * 3] + b) >> 2) - 128;
553
+ pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3] + pSrc2[ 8 * 3] + pSrc2[ 9 * 3] + a) >> 2) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + pSrc2[10 * 3] + pSrc2[11 * 3] + b) >> 2) - 128;
554
+ pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + pSrc2[12 * 3] + pSrc2[13 * 3] + a) >> 2) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + pSrc2[14 * 3] + pSrc2[15 * 3] + b) >> 2) - 128;
555
+ int temp = a; a = b; b = temp;
556
+ }
557
+ }
558
+
559
+ void jpeg_encoder::load_block_16_8_8(int x, int c)
560
+ {
561
+ uint8 *pSrc1;
562
+ sample_array_t *pDst = m_sample_array;
563
+ x = (x * (16 * 3)) + c;
564
+ for (int i = 0; i < 8; i++, pDst += 8)
565
+ {
566
+ pSrc1 = m_mcu_lines[i + 0] + x;
567
+ pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3]) >> 1) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3]) >> 1) - 128;
568
+ pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3]) >> 1) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3]) >> 1) - 128;
569
+ pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3]) >> 1) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3]) >> 1) - 128;
570
+ pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3]) >> 1) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3]) >> 1) - 128;
571
+ }
572
+ }
573
+
574
+ void jpeg_encoder::load_quantized_coefficients(int component_num)
575
+ {
576
+ int32 *q = m_quantization_tables[component_num > 0];
577
+ int16 *pDst = m_coefficient_array;
578
+ for (int i = 0; i < 64; i++)
579
+ {
580
+ sample_array_t j = m_sample_array[s_zag[i]];
581
+ if (j < 0)
582
+ {
583
+ if ((j = -j + (*q >> 1)) < *q)
584
+ *pDst++ = 0;
585
+ else
586
+ *pDst++ = static_cast<int16>(-(j / *q));
587
+ }
588
+ else
589
+ {
590
+ if ((j = j + (*q >> 1)) < *q)
591
+ *pDst++ = 0;
592
+ else
593
+ *pDst++ = static_cast<int16>((j / *q));
594
+ }
595
+ q++;
596
+ }
597
+ }
598
+
599
+ void jpeg_encoder::flush_output_buffer()
600
+ {
601
+ if (m_out_buf_left != JPGE_OUT_BUF_SIZE)
602
+ m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(m_out_buf, JPGE_OUT_BUF_SIZE - m_out_buf_left);
603
+ m_pOut_buf = m_out_buf;
604
+ m_out_buf_left = JPGE_OUT_BUF_SIZE;
605
+ }
606
+
607
+ void jpeg_encoder::put_bits(uint bits, uint len)
608
+ {
609
+ m_bit_buffer |= ((uint32)bits << (24 - (m_bits_in += len)));
610
+ while (m_bits_in >= 8)
611
+ {
612
+ uint8 c;
613
+ #define JPGE_PUT_BYTE(c) { *m_pOut_buf++ = (c); if (--m_out_buf_left == 0) flush_output_buffer(); }
614
+ JPGE_PUT_BYTE(c = (uint8)((m_bit_buffer >> 16) & 0xFF));
615
+ if (c == 0xFF) JPGE_PUT_BYTE(0);
616
+ m_bit_buffer <<= 8;
617
+ m_bits_in -= 8;
618
+ }
619
+ }
620
+
621
+ void jpeg_encoder::code_coefficients_pass_one(int component_num)
622
+ {
623
+ if (component_num >= 3) return; // just to shut up static analysis
624
+ int i, run_len, nbits, temp1;
625
+ int16 *src = m_coefficient_array;
626
+ uint32 *dc_count = component_num ? m_huff_count[0 + 1] : m_huff_count[0 + 0], *ac_count = component_num ? m_huff_count[2 + 1] : m_huff_count[2 + 0];
627
+
628
+ temp1 = src[0] - m_last_dc_val[component_num];
629
+ m_last_dc_val[component_num] = src[0];
630
+ if (temp1 < 0) temp1 = -temp1;
631
+
632
+ nbits = 0;
633
+ while (temp1)
634
+ {
635
+ nbits++; temp1 >>= 1;
636
+ }
637
+
638
+ dc_count[nbits]++;
639
+ for (run_len = 0, i = 1; i < 64; i++)
640
+ {
641
+ if ((temp1 = m_coefficient_array[i]) == 0)
642
+ run_len++;
643
+ else
644
+ {
645
+ while (run_len >= 16)
646
+ {
647
+ ac_count[0xF0]++;
648
+ run_len -= 16;
649
+ }
650
+ if (temp1 < 0) temp1 = -temp1;
651
+ nbits = 1;
652
+ while (temp1 >>= 1) nbits++;
653
+ ac_count[(run_len << 4) + nbits]++;
654
+ run_len = 0;
655
+ }
656
+ }
657
+ if (run_len) ac_count[0]++;
658
+ }
659
+
660
+ void jpeg_encoder::code_coefficients_pass_two(int component_num)
661
+ {
662
+ int i, j, run_len, nbits, temp1, temp2;
663
+ int16 *pSrc = m_coefficient_array;
664
+ uint *codes[2];
665
+ uint8 *code_sizes[2];
666
+
667
+ if (component_num == 0)
668
+ {
669
+ codes[0] = m_huff_codes[0 + 0]; codes[1] = m_huff_codes[2 + 0];
670
+ code_sizes[0] = m_huff_code_sizes[0 + 0]; code_sizes[1] = m_huff_code_sizes[2 + 0];
671
+ }
672
+ else
673
+ {
674
+ codes[0] = m_huff_codes[0 + 1]; codes[1] = m_huff_codes[2 + 1];
675
+ code_sizes[0] = m_huff_code_sizes[0 + 1]; code_sizes[1] = m_huff_code_sizes[2 + 1];
676
+ }
677
+
678
+ temp1 = temp2 = pSrc[0] - m_last_dc_val[component_num];
679
+ m_last_dc_val[component_num] = pSrc[0];
680
+
681
+ if (temp1 < 0)
682
+ {
683
+ temp1 = -temp1; temp2--;
684
+ }
685
+
686
+ nbits = 0;
687
+ while (temp1)
688
+ {
689
+ nbits++; temp1 >>= 1;
690
+ }
691
+
692
+ put_bits(codes[0][nbits], code_sizes[0][nbits]);
693
+ if (nbits) put_bits(temp2 & ((1 << nbits) - 1), nbits);
694
+
695
+ for (run_len = 0, i = 1; i < 64; i++)
696
+ {
697
+ if ((temp1 = m_coefficient_array[i]) == 0)
698
+ run_len++;
699
+ else
700
+ {
701
+ while (run_len >= 16)
702
+ {
703
+ put_bits(codes[1][0xF0], code_sizes[1][0xF0]);
704
+ run_len -= 16;
705
+ }
706
+ if ((temp2 = temp1) < 0)
707
+ {
708
+ temp1 = -temp1;
709
+ temp2--;
710
+ }
711
+ nbits = 1;
712
+ while (temp1 >>= 1)
713
+ nbits++;
714
+ j = (run_len << 4) + nbits;
715
+ put_bits(codes[1][j], code_sizes[1][j]);
716
+ put_bits(temp2 & ((1 << nbits) - 1), nbits);
717
+ run_len = 0;
718
+ }
719
+ }
720
+ if (run_len)
721
+ put_bits(codes[1][0], code_sizes[1][0]);
722
+ }
723
+
724
+ void jpeg_encoder::code_block(int component_num)
725
+ {
726
+ DCT2D(m_sample_array);
727
+ load_quantized_coefficients(component_num);
728
+ if (m_pass_num == 1)
729
+ code_coefficients_pass_one(component_num);
730
+ else
731
+ code_coefficients_pass_two(component_num);
732
+ }
733
+
734
+ void jpeg_encoder::process_mcu_row()
735
+ {
736
+ if (m_num_components == 1)
737
+ {
738
+ for (int i = 0; i < m_mcus_per_row; i++)
739
+ {
740
+ load_block_8_8_grey(i); code_block(0);
741
+ }
742
+ }
743
+ else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1))
744
+ {
745
+ for (int i = 0; i < m_mcus_per_row; i++)
746
+ {
747
+ load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2);
748
+ }
749
+ }
750
+ else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1))
751
+ {
752
+ for (int i = 0; i < m_mcus_per_row; i++)
753
+ {
754
+ load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
755
+ load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2);
756
+ }
757
+ }
758
+ else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2))
759
+ {
760
+ for (int i = 0; i < m_mcus_per_row; i++)
761
+ {
762
+ load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
763
+ load_block_8_8(i * 2 + 0, 1, 0); code_block(0); load_block_8_8(i * 2 + 1, 1, 0); code_block(0);
764
+ load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2);
765
+ }
766
+ }
767
+ }
768
+
769
+ bool jpeg_encoder::terminate_pass_one()
770
+ {
771
+ optimize_huffman_table(0+0, DC_LUM_CODES); optimize_huffman_table(2+0, AC_LUM_CODES);
772
+ if (m_num_components > 1)
773
+ {
774
+ optimize_huffman_table(0+1, DC_CHROMA_CODES); optimize_huffman_table(2+1, AC_CHROMA_CODES);
775
+ }
776
+ return second_pass_init();
777
+ }
778
+
779
+ bool jpeg_encoder::terminate_pass_two()
780
+ {
781
+ put_bits(0x7F, 7);
782
+ flush_output_buffer();
783
+ emit_marker(M_EOI);
784
+ m_pass_num++; // purposely bump up m_pass_num, for debugging
785
+ return true;
786
+ }
787
+
788
+ bool jpeg_encoder::process_end_of_image()
789
+ {
790
+ if (m_mcu_y_ofs)
791
+ {
792
+ if (m_mcu_y_ofs < 16) // check here just to shut up static analysis
793
+ {
794
+ for (int i = m_mcu_y_ofs; i < m_mcu_y; i++)
795
+ memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs - 1], m_image_bpl_mcu);
796
+ }
797
+
798
+ process_mcu_row();
799
+ }
800
+
801
+ if (m_pass_num == 1)
802
+ return terminate_pass_one();
803
+ else
804
+ return terminate_pass_two();
805
+ }
806
+
807
+ void jpeg_encoder::load_mcu(const void *pSrc)
808
+ {
809
+ const uint8* Psrc = reinterpret_cast<const uint8*>(pSrc);
810
+
811
+ uint8* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst
812
+
813
+ if (m_num_components == 1)
814
+ {
815
+ if (m_image_bpp == 4)
816
+ RGBA_to_Y(pDst, Psrc, m_image_x);
817
+ else if (m_image_bpp == 3)
818
+ RGB_to_Y(pDst, Psrc, m_image_x);
819
+ else
820
+ memcpy(pDst, Psrc, m_image_x);
821
+ }
822
+ else
823
+ {
824
+ if (m_image_bpp == 4)
825
+ RGBA_to_YCC(pDst, Psrc, m_image_x);
826
+ else if (m_image_bpp == 3)
827
+ RGB_to_YCC(pDst, Psrc, m_image_x);
828
+ else
829
+ Y_to_YCC(pDst, Psrc, m_image_x);
830
+ }
831
+
832
+ // Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16
833
+ if (m_num_components == 1)
834
+ memset(m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt, pDst[m_image_bpl_xlt - 1], m_image_x_mcu - m_image_x);
835
+ else
836
+ {
837
+ const uint8 y = pDst[m_image_bpl_xlt - 3 + 0], cb = pDst[m_image_bpl_xlt - 3 + 1], cr = pDst[m_image_bpl_xlt - 3 + 2];
838
+ uint8 *q = m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt;
839
+ for (int i = m_image_x; i < m_image_x_mcu; i++)
840
+ {
841
+ *q++ = y; *q++ = cb; *q++ = cr;
842
+ }
843
+ }
844
+
845
+ if (++m_mcu_y_ofs == m_mcu_y)
846
+ {
847
+ process_mcu_row();
848
+ m_mcu_y_ofs = 0;
849
+ }
850
+ }
851
+
852
+ void jpeg_encoder::clear()
853
+ {
854
+ m_mcu_lines[0] = NULL;
855
+ m_pass_num = 0;
856
+ m_all_stream_writes_succeeded = true;
857
+ }
858
+
859
+ jpeg_encoder::jpeg_encoder()
860
+ {
861
+ clear();
862
+ }
863
+
864
+ jpeg_encoder::~jpeg_encoder()
865
+ {
866
+ deinit();
867
+ }
868
+
869
+ bool jpeg_encoder::init(output_stream *pStream, int64_t width, int64_t height, int64_t src_channels, const params &comp_params)
870
+ {
871
+ deinit();
872
+ if (((!pStream) || (width < 1) || (height < 1)) || ((src_channels != 1) && (src_channels != 3) && (src_channels != 4)) || (!comp_params.check_valid())) return false;
873
+ m_pStream = pStream;
874
+ m_params = comp_params;
875
+ return jpg_open(width, height, src_channels);
876
+ }
877
+
878
+ void jpeg_encoder::deinit()
879
+ {
880
+ jpge_free(m_mcu_lines[0]);
881
+ clear();
882
+ }
883
+
884
+ bool jpeg_encoder::process_scanline(const void* pScanline)
885
+ {
886
+ if ((m_pass_num < 1) || (m_pass_num > 2)) return false;
887
+ if (m_all_stream_writes_succeeded)
888
+ {
889
+ if (!pScanline)
890
+ {
891
+ if (!process_end_of_image()) return false;
892
+ }
893
+ else
894
+ {
895
+ load_mcu(pScanline);
896
+ }
897
+ }
898
+ return m_all_stream_writes_succeeded;
899
+ }
900
+
901
+ // Higher level wrappers/examples (optional).
902
+ #include <stdio.h>
903
+
904
+ class cfile_stream : public output_stream
905
+ {
906
+ cfile_stream(const cfile_stream &);
907
+ cfile_stream &operator= (const cfile_stream &);
908
+
909
+ FILE* m_pFile;
910
+ bool m_bStatus;
911
+
912
+ public:
913
+ cfile_stream() : m_pFile(NULL), m_bStatus(false) { }
914
+
915
+ virtual ~cfile_stream()
916
+ {
917
+ close();
918
+ }
919
+
920
+ bool open(const char *pFilename)
921
+ {
922
+ close();
923
+ #if defined(_MSC_VER)
924
+ if (fopen_s(&m_pFile, pFilename, "wb") != 0)
925
+ {
926
+ return false;
927
+ }
928
+ #else
929
+ m_pFile = fopen(pFilename, "wb");
930
+ #endif
931
+ m_bStatus = (m_pFile != NULL);
932
+ return m_bStatus;
933
+ }
934
+
935
+ bool close()
936
+ {
937
+ if (m_pFile)
938
+ {
939
+ if (fclose(m_pFile) == EOF)
940
+ {
941
+ m_bStatus = false;
942
+ }
943
+ m_pFile = NULL;
944
+ }
945
+ return m_bStatus;
946
+ }
947
+
948
+ virtual bool put_buf(const void* pBuf, int64_t len)
949
+ {
950
+ m_bStatus = m_bStatus && (fwrite(pBuf, len, 1, m_pFile) == 1);
951
+ return m_bStatus;
952
+ }
953
+
954
+ uint get_size() const
955
+ {
956
+ return m_pFile ? ftell(m_pFile) : 0;
957
+ }
958
+ };
959
+
960
+ // Writes JPEG image to file.
961
+ bool compress_image_to_jpeg_file(const char *pFilename, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params)
962
+ {
963
+ cfile_stream dst_stream;
964
+ if (!dst_stream.open(pFilename))
965
+ return false;
966
+
967
+ jpge::jpeg_encoder dst_image;
968
+ if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params))
969
+ return false;
970
+
971
+ for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++)
972
+ {
973
+ for (int64_t i = 0; i < height; i++)
974
+ {
975
+ // i, width, and num_channels are all 64bit
976
+ const uint8* pBuf = pImage_data + i * width * num_channels;
977
+ if (!dst_image.process_scanline(pBuf))
978
+ return false;
979
+ }
980
+ if (!dst_image.process_scanline(NULL))
981
+ return false;
982
+ }
983
+
984
+ dst_image.deinit();
985
+
986
+ return dst_stream.close();
987
+ }
988
+
989
+ class memory_stream : public output_stream
990
+ {
991
+ memory_stream(const memory_stream &);
992
+ memory_stream &operator= (const memory_stream &);
993
+
994
+ uint8 *m_pBuf;
995
+ uint64_t m_buf_size, m_buf_ofs;
996
+
997
+ public:
998
+ memory_stream(void *pBuf, uint64_t buf_size) : m_pBuf(static_cast<uint8*>(pBuf)), m_buf_size(buf_size), m_buf_ofs(0) { }
999
+
1000
+ virtual ~memory_stream() { }
1001
+
1002
+ virtual bool put_buf(const void* pBuf, int64_t len)
1003
+ {
1004
+ uint64_t buf_remaining = m_buf_size - m_buf_ofs;
1005
+ if ((uint64_t)len > buf_remaining)
1006
+ return false;
1007
+ memcpy(m_pBuf + m_buf_ofs, pBuf, len);
1008
+ m_buf_ofs += len;
1009
+ return true;
1010
+ }
1011
+
1012
+ uint64_t get_size() const
1013
+ {
1014
+ return m_buf_ofs;
1015
+ }
1016
+ };
1017
+
1018
+ bool compress_image_to_jpeg_file_in_memory(void *pDstBuf, int64_t &buf_size, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params)
1019
+ {
1020
+ if ((!pDstBuf) || (!buf_size))
1021
+ return false;
1022
+
1023
+ memory_stream dst_stream(pDstBuf, buf_size);
1024
+
1025
+ buf_size = 0;
1026
+
1027
+ jpge::jpeg_encoder dst_image;
1028
+ if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params))
1029
+ return false;
1030
+
1031
+ for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++)
1032
+ {
1033
+ for (int64_t i = 0; i < height; i++)
1034
+ {
1035
+ const uint8* pScanline = pImage_data + i * width * num_channels;
1036
+ if (!dst_image.process_scanline(pScanline))
1037
+ return false;
1038
+ }
1039
+ if (!dst_image.process_scanline(NULL))
1040
+ return false;
1041
+ }
1042
+
1043
+ dst_image.deinit();
1044
+
1045
+ buf_size = dst_stream.get_size();
1046
+ return true;
1047
+ }
1048
+
1049
+ } // namespace jpge
crazy_functions/test_project/cpp/libJPG/jpge.h ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ // jpge.h - C++ class for JPEG compression.
3
+ // Public domain, Rich Geldreich <richgel99@gmail.com>
4
+ // Alex Evans: Added RGBA support, linear memory allocator.
5
+ #ifndef JPEG_ENCODER_H
6
+ #define JPEG_ENCODER_H
7
+
8
+ #include <stdint.h>
9
+
10
+ namespace jpge
11
+ {
12
+ typedef unsigned char uint8;
13
+ typedef signed short int16;
14
+ typedef signed int int32;
15
+ typedef unsigned short uint16;
16
+ typedef unsigned int uint32;
17
+ typedef unsigned int uint;
18
+
19
+ // JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common.
20
+ enum subsampling_t { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 };
21
+
22
+ // JPEG compression parameters structure.
23
+ struct params
24
+ {
25
+ inline params() : m_quality(85), m_subsampling(H2V2), m_no_chroma_discrim_flag(false), m_two_pass_flag(false) { }
26
+
27
+ inline bool check_valid() const
28
+ {
29
+ if ((m_quality < 1) || (m_quality > 100)) return false;
30
+ if ((uint)m_subsampling > (uint)H2V2) return false;
31
+ return true;
32
+ }
33
+
34
+ // Quality: 1-100, higher is better. Typical values are around 50-95.
35
+ int m_quality;
36
+
37
+ // m_subsampling:
38
+ // 0 = Y (grayscale) only
39
+ // 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU)
40
+ // 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
41
+ // 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
42
+ subsampling_t m_subsampling;
43
+
44
+ // Disables CbCr discrimination - only intended for testing.
45
+ // If true, the Y quantization table is also used for the CbCr channels.
46
+ bool m_no_chroma_discrim_flag;
47
+
48
+ bool m_two_pass_flag;
49
+ };
50
+
51
+ // Writes JPEG image to a file.
52
+ // num_channels must be 1 (Y) or 3 (RGB), image pitch must be width*num_channels.
53
+ bool compress_image_to_jpeg_file(const char *pFilename, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params = params());
54
+
55
+ // Writes JPEG image to memory buffer.
56
+ // On entry, buf_size is the size of the output buffer pointed at by pBuf, which should be at least ~1024 bytes.
57
+ // If return value is true, buf_size will be set to the size of the compressed data.
58
+ bool compress_image_to_jpeg_file_in_memory(void *pBuf, int64_t &buf_size, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params = params());
59
+
60
+ // Output stream abstract class - used by the jpeg_encoder class to write to the output stream.
61
+ // put_buf() is generally called with len==JPGE_OUT_BUF_SIZE bytes, but for headers it'll be called with smaller amounts.
62
+ class output_stream
63
+ {
64
+ public:
65
+ virtual ~output_stream() { };
66
+ virtual bool put_buf(const void* Pbuf, int64_t len) = 0;
67
+ template<class T> inline bool put_obj(const T& obj) { return put_buf(&obj, sizeof(T)); }
68
+ };
69
+
70
+ // Lower level jpeg_encoder class - useful if more control is needed than the above helper functions.
71
+ class jpeg_encoder
72
+ {
73
+ public:
74
+ jpeg_encoder();
75
+ ~jpeg_encoder();
76
+
77
+ // Initializes the compressor.
78
+ // pStream: The stream object to use for writing compressed data.
79
+ // params - Compression parameters structure, defined above.
80
+ // width, height - Image dimensions.
81
+ // channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data.
82
+ // Returns false on out of memory or if a stream write fails.
83
+ bool init(output_stream *pStream, int64_t width, int64_t height, int64_t src_channels, const params &comp_params = params());
84
+
85
+ const params &get_params() const { return m_params; }
86
+
87
+ // Deinitializes the compressor, freeing any allocated memory. May be called at any time.
88
+ void deinit();
89
+
90
+ uint get_total_passes() const { return m_params.m_two_pass_flag ? 2 : 1; }
91
+ inline uint get_cur_pass() { return m_pass_num; }
92
+
93
+ // Call this method with each source scanline.
94
+ // width * src_channels bytes per scanline is expected (RGB or Y format).
95
+ // You must call with NULL after all scanlines are processed to finish compression.
96
+ // Returns false on out of memory or if a stream write fails.
97
+ bool process_scanline(const void* pScanline);
98
+
99
+ private:
100
+ jpeg_encoder(const jpeg_encoder &);
101
+ jpeg_encoder &operator =(const jpeg_encoder &);
102
+
103
+ typedef int32 sample_array_t;
104
+
105
+ output_stream *m_pStream;
106
+ params m_params;
107
+ uint8 m_num_components;
108
+ uint8 m_comp_h_samp[3], m_comp_v_samp[3];
109
+ int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
110
+ int m_image_x_mcu, m_image_y_mcu;
111
+ int m_image_bpl_xlt, m_image_bpl_mcu;
112
+ int m_mcus_per_row;
113
+ int m_mcu_x, m_mcu_y;
114
+ uint8 *m_mcu_lines[16];
115
+ uint8 m_mcu_y_ofs;
116
+ sample_array_t m_sample_array[64];
117
+ int16 m_coefficient_array[64];
118
+ int32 m_quantization_tables[2][64];
119
+ uint m_huff_codes[4][256];
120
+ uint8 m_huff_code_sizes[4][256];
121
+ uint8 m_huff_bits[4][17];
122
+ uint8 m_huff_val[4][256];
123
+ uint32 m_huff_count[4][256];
124
+ int m_last_dc_val[3];
125
+ enum { JPGE_OUT_BUF_SIZE = 2048 };
126
+ uint8 m_out_buf[JPGE_OUT_BUF_SIZE];
127
+ uint8 *m_pOut_buf;
128
+ uint m_out_buf_left;
129
+ uint32 m_bit_buffer;
130
+ uint m_bits_in;
131
+ uint8 m_pass_num;
132
+ bool m_all_stream_writes_succeeded;
133
+
134
+ void optimize_huffman_table(int table_num, int table_len);
135
+ void emit_byte(uint8 i);
136
+ void emit_word(uint i);
137
+ void emit_marker(int marker);
138
+ void emit_jfif_app0();
139
+ void emit_dqt();
140
+ void emit_sof();
141
+ void emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag);
142
+ void emit_dhts();
143
+ void emit_sos();
144
+ void emit_markers();
145
+ void compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val);
146
+ void compute_quant_table(int32 *dst, int16 *src);
147
+ void adjust_quant_table(int32 *dst, int32 *src);
148
+ void first_pass_init();
149
+ bool second_pass_init();
150
+ bool jpg_open(int p_x_res, int p_y_res, int src_channels);
151
+ void load_block_8_8_grey(int x);
152
+ void load_block_8_8(int x, int y, int c);
153
+ void load_block_16_8(int x, int c);
154
+ void load_block_16_8_8(int x, int c);
155
+ void load_quantized_coefficients(int component_num);
156
+ void flush_output_buffer();
157
+ void put_bits(uint bits, uint len);
158
+ void code_coefficients_pass_one(int component_num);
159
+ void code_coefficients_pass_two(int component_num);
160
+ void code_block(int component_num);
161
+ void process_mcu_row();
162
+ bool terminate_pass_one();
163
+ bool terminate_pass_two();
164
+ bool process_end_of_image();
165
+ void load_mcu(const void* src);
166
+ void clear();
167
+ void init();
168
+ };
169
+
170
+ } // namespace jpge
171
+
172
+ #endif // JPEG_ENCODER
crazy_functions/test_project/cpp/libJPG/来源 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ jpge.h - C++ class for JPEG compression.
2
+ Public domain, Rich Geldreich <richgel99@gmail.com>
3
+ Alex Evans: Added RGBA support, linear memory allocator.
crazy_functions/test_project/latex/attention/background.tex ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The goal of reducing sequential computation also forms the foundation of the Extended Neural GPU \citep{extendedngpu}, ByteNet \citep{NalBytenet2017} and ConvS2S \citep{JonasFaceNet2017}, all of which use convolutional neural networks as basic building block, computing hidden representations in parallel for all input and output positions. In these models, the number of operations required to relate signals from two arbitrary input or output positions grows in the distance between positions, linearly for ConvS2S and logarithmically for ByteNet. This makes it more difficult to learn dependencies between distant positions \citep{hochreiter2001gradient}. In the Transformer this is reduced to a constant number of operations, albeit at the cost of reduced effective resolution due to averaging attention-weighted positions, an effect we counteract with Multi-Head Attention as described in section~\ref{sec:attention}.
2
+
3
+ Self-attention, sometimes called intra-attention is an attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence. Self-attention has been used successfully in a variety of tasks including reading comprehension, abstractive summarization, textual entailment and learning task-independent sentence representations \citep{cheng2016long, decomposableAttnModel, paulus2017deep, lin2017structured}.
4
+
5
+ End-to-end memory networks are based on a recurrent attention mechanism instead of sequence-aligned recurrence and have been shown to perform well on simple-language question answering and language modeling tasks \citep{sukhbaatar2015}.
6
+
7
+ To the best of our knowledge, however, the Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequence-aligned RNNs or convolution.
8
+ In the following sections, we will describe the Transformer, motivate self-attention and discuss its advantages over models such as \citep{neural_gpu, NalBytenet2017} and \citep{JonasFaceNet2017}.
9
+
10
+
11
+ %\citep{JonasFaceNet2017} report new SOTA on machine translation for English-to-German (EnDe), Enlish-to-French (EnFr) and English-to-Romanian language pairs.
12
+
13
+ %For example,! in MT, we must draw information from both input and previous output words to translate an output word accurately. An attention layer \citep{bahdanau2014neural} can connect a very large number of positions at low computation cost, making it an essential ingredient in competitive recurrent models for machine translation.
14
+
15
+ %A natural question to ask then is, "Could we replace recurrence with attention?". \marginpar{Don't know if it's the most natural question to ask given the previous statements. Also, need to say that the complexity table summarizes these statements} Such a model would be blessed with the computational efficiency of attention and the power of cross-positional communication. In this work, show that pure attention models work remarkably well for MT, achieving new SOTA results on EnDe and EnFr, and can be trained in under $2$ days on xyz architecture.
16
+
17
+ %After the seminal models introduced in \citep{sutskever14, bahdanau2014neural, cho2014learning}, recurrent models have become the dominant solution for both sequence modeling and sequence-to-sequence transduction. Many efforts such as \citep{wu2016google,luong2015effective,jozefowicz2016exploring} have pushed the boundaries of machine translation (MT) and language modeling with recurrent endoder-decoder and recurrent language models. Recent effort \citep{shazeer2017outrageously} has successfully combined the power of conditional computation with sequence models to train very large models for MT, pushing SOTA at lower computational cost.
18
+
19
+ %Recurrent models compute a vector of hidden states $h_t$, for each time step $t$ of computation. $h_t$ is a function of both the input at time $t$ and the previous hidden state $h_t$. This dependence on the previous hidden state precludes processing all timesteps at once, instead requiring long sequences of sequential operations. In practice, this results in greatly reduced computational efficiency, as on modern computing hardware, a single operation on a large batch is much faster than a large number of operations on small batches. The problem gets worse at longer sequence lengths. Although sequential computation is not a severe bottleneck at inference time, as autoregressively generating each output requires all previous outputs, the inability to compute scores at all output positions at once hinders us from rapidly training our models over large datasets. Although impressive work such as \citep{Kuchaiev2017Factorization} is able to significantly accelerate the training of LSTMs with factorization tricks, we are still bound by the linear dependence on sequence length.
20
+
21
+ %If the model could compute hidden states at each time step using only the inputs and outputs, it would be liberated from the dependence on results from previous time steps during training. This line of thought is the foundation of recent efforts such as the Markovian neural GPU \citep{neural_gpu}, ByteNet \citep{NalBytenet2017} and ConvS2S \citep{JonasFaceNet2017}, all of which use convolutional neural networks as a building block to compute hidden representations simultaneously for all timesteps, resulting in $O(1)$ sequential time complexity. \citep{JonasFaceNet2017} report new SOTA on machine translation for English-to-German (EnDe), Enlish-to-French (EnFr) and English-to-Romanian language pairs.
22
+
23
+ %A crucial component for accurate sequence prediction is modeling cross-positional communication. For example, in MT, we must draw information from both input and previous output words to translate an output word accurately. An attention layer \citep{bahdanau2014neural} can connect a very large number of positions at a low computation cost, also $O(1)$ sequential time complexity, making it an essential ingredient in recurrent encoder-decoder architectures for MT. A natural question to ask then is, "Could we replace recurrence with attention?". \marginpar{Don't know if it's the most natural question to ask given the previous statements. Also, need to say that the complexity table summarizes these statements} Such a model would be blessed with the computational efficiency of attention and the power of cross-positional communication. In this work, show that pure attention models work remarkably well for MT, achieving new SOTA results on EnDe and EnFr, and can be trained in under $2$ days on xyz architecture.
24
+
25
+
26
+
27
+ %Note: Facebook model is no better than RNNs in this regard, since it requires a number of layers proportional to the distance you want to communicate. Bytenet is more promising, since it requires a logarithmnic number of layers (does bytenet have SOTA results)?
28
+
29
+ %Note: An attention layer can connect a very large number of positions at a low computation cost in O(1) sequential operations. This is why encoder-decoder attention has been so successful in seq-to-seq models so far. It is only natural, then, to also use attention to connect the timesteps of the same sequence.
30
+
31
+ %Note: I wouldn't say that long sequences are not a problem during inference. It would be great if we could infer with no long sequences. We could just say later on that, while our training graph is constant-depth, our model still requires sequential operations in the decoder part during inference due to the autoregressive nature of the model.
32
+
33
+ %\begin{table}[h!]
34
+ %\caption{Attention models are quite efficient for cross-positional communications when sequence length is smaller than channel depth. $n$ represents the sequence length and $d$ represents the channel depth.}
35
+ %\label{tab:op_complexities}
36
+ %\begin{center}
37
+ %\vspace{-5pt}
38
+ %\scalebox{0.75}{
39
+
40
+ %\begin{tabular}{l|c|c|c}
41
+ %\hline \hline
42
+ %Layer Type & Receptive & Complexity & Sequential \\
43
+ % & Field & & Operations \\
44
+ %\hline
45
+ %Pointwise Feed-Forward & $1$ & $O(n \cdot d^2)$ & $O(1)$ \\
46
+ %\hline
47
+ %Recurrent & $n$ & $O(n \cdot d^2)$ & $O(n)$ \\
48
+ %\hline
49
+ %Convolutional & $r$ & $O(r \cdot n \cdot d^2)$ & $O(1)$ \\
50
+ %\hline
51
+ %Convolutional (separable) & $r$ & $O(r \cdot n \cdot d + n %\cdot d^2)$ & $O(1)$ \\
52
+ %\hline
53
+ %Attention & $r$ & $O(r \cdot n \cdot d)$ & $O(1)$ \\
54
+ %\hline \hline
55
+ %\end{tabular}
56
+ %}
57
+ %\end{center}
58
+ %\end{table}
crazy_functions/test_project/latex/attention/introduction.tex ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Recurrent neural networks, long short-term memory \citep{hochreiter1997} and gated recurrent \citep{gruEval14} neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation \citep{sutskever14, bahdanau2014neural, cho2014learning}. Numerous efforts have since continued to push the boundaries of recurrent language models and encoder-decoder architectures \citep{wu2016google,luong2015effective,jozefowicz2016exploring}.
2
+
3
+ Recurrent models typically factor computation along the symbol positions of the input and output sequences. Aligning the positions to steps in computation time, they generate a sequence of hidden states $h_t$, as a function of the previous hidden state $h_{t-1}$ and the input for position $t$. This inherently sequential nature precludes parallelization within training examples, which becomes critical at longer sequence lengths, as memory constraints limit batching across examples.
4
+ %\marginpar{not sure if the memory constraints are understandable here}
5
+ Recent work has achieved significant improvements in computational efficiency through factorization tricks \citep{Kuchaiev2017Factorization} and conditional computation \citep{shazeer2017outrageously}, while also improving model performance in case of the latter. The fundamental constraint of sequential computation, however, remains.
6
+
7
+ %\marginpar{@all: there is work on analyzing what attention really does in seq2seq models, couldn't find it right away}
8
+
9
+ Attention mechanisms have become an integral part of compelling sequence modeling and transduction models in various tasks, allowing modeling of dependencies without regard to their distance in the input or output sequences \citep{bahdanau2014neural, structuredAttentionNetworks}. In all but a few cases \citep{decomposableAttnModel}, however, such attention mechanisms are used in conjunction with a recurrent network.
10
+
11
+ %\marginpar{not sure if "cross-positional communication" is understandable without explanation}
12
+ %\marginpar{insert exact training times and stats for the model that reaches sota earliest, maybe even a single GPU model?}
13
+
14
+ In this work we propose the Transformer, a model architecture eschewing recurrence and instead relying entirely on an attention mechanism to draw global dependencies between input and output. The Transformer allows for significantly more parallelization and can reach a new state of the art in translation quality after being trained for as little as twelve hours on eight P100 GPUs.
15
+ %\marginpar{you removed the constant number of repetitions part. I wrote it because I wanted to make it clear that the model does not only perform attention once, while it's also not recurrent. I thought that might be important to get across early.}
16
+
17
+ % Just a standard paragraph with citations, rewrite.
18
+ %After the seminal papers of \citep{sutskever14}, \citep{bahdanau2014neural}, and \citep{cho2014learning}, recurrent models have become the dominant solution for both sequence modeling and sequence-to-sequence transduction. Many efforts such as \citep{wu2016google,luong2015effective,jozefowicz2016exploring} have pushed the boundaries of machine translation and language modeling with recurrent sequence models. Recent effort \citep{shazeer2017outrageously} has combined the power of conditional computation with sequence models to train very large models for machine translation, pushing SOTA at lower computational cost. Recurrent models compute a vector of hidden states $h_t$, for each time step $t$ of computation. $h_t$ is a function of both the input at time $t$ and the previous hidden state $h_t$. This dependence on the previous hidden state encumbers recurrnet models to process multiple inputs at once, and their time complexity is a linear function of the length of the input and output, both during training and inference. [What I want to say here is that although this is fine during decoding, at training time, we are given both input and output and this linear nature does not allow the RNN to process all inputs and outputs simultaneously and haven't been used on datasets that are the of the scale of the web. What's the largest dataset we have ? . Talk about Nividia and possibly other's effors to speed up things, and possibly other efforts that alleviate this, but are still limited by it's comptuational nature]. Rest of the intro: What if you could construct the state based on the actual inputs and outputs, then you could construct them all at once. This has been the foundation of many promising recent efforts, bytenet,facenet (Also talk about quasi rnn here). Now we talk about attention!! Along with cell architectures such as long short-term meory (LSTM) \citep{hochreiter1997}, and gated recurrent units (GRUs) \citep{cho2014learning}, attention has emerged as an essential ingredient in successful sequence models, in particular for machine translation. In recent years, many, if not all, state-of-the-art (SOTA) results in machine translation have been achieved with attention-based sequence models \citep{wu2016google,luong2015effective,jozefowicz2016exploring}. Talk about the neon work on how it played with attention to do self attention! Then talk about what we do.
crazy_functions/test_project/latex/attention/model_architecture.tex ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ \begin{figure}
3
+ \centering
4
+ \includegraphics[scale=0.6]{Figures/ModalNet-21}
5
+ \caption{The Transformer - model architecture.}
6
+ \label{fig:model-arch}
7
+ \end{figure}
8
+
9
+ % Although the primary workhorse of our model is attention,
10
+ %Our model maintains the encoder-decoder structure that is common to many so-called sequence-to-sequence models \citep{bahdanau2014neural,sutskever14}. As in all such architectures, the encoder computes a representation of the input sequence, and the decoder consumes these representations along with the output tokens to autoregressively produce the output sequence. Where, traditionally, the encoder and decoder contain stacks of recurrent or convolutional layers, our encoder and decoder stacks are composed of attention layers and position-wise feed-forward layers (Figure~\ref{fig:model-arch}). The following sections describe the gross architecture and these particular components in detail.
11
+
12
+ Most competitive neural sequence transduction models have an encoder-decoder structure \citep{cho2014learning,bahdanau2014neural,sutskever14}. Here, the encoder maps an input sequence of symbol representations $(x_1, ..., x_n)$ to a sequence of continuous representations $\mathbf{z} = (z_1, ..., z_n)$. Given $\mathbf{z}$, the decoder then generates an output sequence $(y_1,...,y_m)$ of symbols one element at a time. At each step the model is auto-regressive \citep{graves2013generating}, consuming the previously generated symbols as additional input when generating the next.
13
+
14
+ The Transformer follows this overall architecture using stacked self-attention and point-wise, fully connected layers for both the encoder and decoder, shown in the left and right halves of Figure~\ref{fig:model-arch}, respectively.
15
+
16
+ \subsection{Encoder and Decoder Stacks}
17
+
18
+ \paragraph{Encoder:}The encoder is composed of a stack of $N=6$ identical layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-wise fully connected feed-forward network. We employ a residual connection \citep{he2016deep} around each of the two sub-layers, followed by layer normalization \cite{layernorm2016}. That is, the output of each sub-layer is $\mathrm{LayerNorm}(x + \mathrm{Sublayer}(x))$, where $\mathrm{Sublayer}(x)$ is the function implemented by the sub-layer itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding layers, produce outputs of dimension $\dmodel=512$.
19
+
20
+ \paragraph{Decoder:}The decoder is also composed of a stack of $N=6$ identical layers. In addition to the two sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head attention over the output of the encoder stack. Similar to the encoder, we employ residual connections around each of the sub-layers, followed by layer normalization. We also modify the self-attention sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This masking, combined with fact that the output embeddings are offset by one position, ensures that the predictions for position $i$ can depend only on the known outputs at positions less than $i$.
21
+
22
+ % In our model (Figure~\ref{fig:model-arch}), the encoder and decoder are composed of stacks of alternating self-attention layers (for cross-positional communication) and position-wise feed-forward layers (for in-place computation). In addition, the decoder stack contains encoder-decoder attention layers. Since attention is agnostic to the distances between words, our model requires a "positional encoding" to be added to the encoder and decoder input. The following sections describe all of these components in detail.
23
+
24
+ \subsection{Attention} \label{sec:attention}
25
+ An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key.
26
+
27
+ \subsubsection{Scaled Dot-Product Attention} \label{sec:scaled-dot-prod}
28
+
29
+ % \begin{figure}
30
+ % \centering
31
+ % \includegraphics[scale=0.6]{Figures/ModalNet-19}
32
+ % \caption{Scaled Dot-Product Attention.}
33
+ % \label{fig:multi-head-att}
34
+ % \end{figure}
35
+
36
+ We call our particular attention "Scaled Dot-Product Attention" (Figure~\ref{fig:multi-head-att}). The input consists of queries and keys of dimension $d_k$, and values of dimension $d_v$. We compute the dot products of the query with all keys, divide each by $\sqrt{d_k}$, and apply a softmax function to obtain the weights on the values.
37
+
38
+ In practice, we compute the attention function on a set of queries simultaneously, packed together into a matrix $Q$. The keys and values are also packed together into matrices $K$ and $V$. We compute the matrix of outputs as:
39
+
40
+ \begin{equation}
41
+ \mathrm{Attention}(Q, K, V) = \mathrm{softmax}(\frac{QK^T}{\sqrt{d_k}})V
42
+ \end{equation}
43
+
44
+ The two most commonly used attention functions are additive attention \citep{bahdanau2014neural}, and dot-product (multiplicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor of $\frac{1}{\sqrt{d_k}}$. Additive attention computes the compatibility function using a feed-forward network with a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is much faster and more space-efficient in practice, since it can be implemented using highly optimized matrix multiplication code.
45
+
46
+ %We scale the dot products by $1/\sqrt{d_k}$ to limit the magnitude of the dot products, which works well in practice. Otherwise, we found applying the softmax to often result in weights very close to 0 or 1, and hence minuscule gradients.
47
+
48
+ % Already described in the subsequent section
49
+ %When used as part of decoder self-attention, an optional mask function is applied just before the softmax to prevent positions from attending to subsequent positions. This mask simply sets the logits corresponding to all illegal connections (those outside of the lower triangle) to $-\infty$.
50
+
51
+ %\paragraph{Comparison to Additive Attention: } We choose dot product attention over additive attention \citep{bahdanau2014neural} since it can be computed using highly optimized matrix multiplication code. This optimization is particularly important to us, as we employ many attention layers in our model.
52
+
53
+ While for small values of $d_k$ the two mechanisms perform similarly, additive attention outperforms dot product attention without scaling for larger values of $d_k$ \citep{DBLP:journals/corr/BritzGLL17}. We suspect that for large values of $d_k$, the dot products grow large in magnitude, pushing the softmax function into regions where it has extremely small gradients \footnote{To illustrate why the dot products get large, assume that the components of $q$ and $k$ are independent random variables with mean $0$ and variance $1$. Then their dot product, $q \cdot k = \sum_{i=1}^{d_k} q_ik_i$, has mean $0$ and variance $d_k$.}. To counteract this effect, we scale the dot products by $\frac{1}{\sqrt{d_k}}$.
54
+
55
+
56
+ %We suspect this to be caused by the dot products growing too large in magnitude to result in useful gradients after applying the softmax function. To counteract this, we scale the dot product by $1/\sqrt{d_k}$.
57
+
58
+
59
+ \subsubsection{Multi-Head Attention} \label{sec:multihead}
60
+
61
+ \begin{figure}
62
+ \begin{minipage}[t]{0.5\textwidth}
63
+ \centering
64
+ Scaled Dot-Product Attention \\
65
+ \vspace{0.5cm}
66
+ \includegraphics[scale=0.6]{Figures/ModalNet-19}
67
+ \end{minipage}
68
+ \begin{minipage}[t]{0.5\textwidth}
69
+ \centering
70
+ Multi-Head Attention \\
71
+ \vspace{0.1cm}
72
+ \includegraphics[scale=0.6]{Figures/ModalNet-20}
73
+ \end{minipage}
74
+
75
+
76
+ % \centering
77
+
78
+ \caption{(left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.}
79
+ \label{fig:multi-head-att}
80
+ \end{figure}
81
+
82
+ Instead of performing a single attention function with $\dmodel$-dimensional keys, values and queries, we found it beneficial to linearly project the queries, keys and values $h$ times with different, learned linear projections to $d_k$, $d_k$ and $d_v$ dimensions, respectively.
83
+ On each of these projected versions of queries, keys and values we then perform the attention function in parallel, yielding $d_v$-dimensional output values. These are concatenated and once again projected, resulting in the final values, as depicted in Figure~\ref{fig:multi-head-att}.
84
+
85
+ Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions. With a single attention head, averaging inhibits this.
86
+
87
+ \begin{align*}
88
+ \mathrm{MultiHead}(Q, K, V) &= \mathrm{Concat}(\mathrm{head_1}, ..., \mathrm{head_h})W^O\\
89
+ % \mathrm{where} \mathrm{head_i} &= \mathrm{Attention}(QW_Q_i^{\dmodel \times d_q}, KW_K_i^{\dmodel \times d_k}, VW^V_i^{\dmodel \times d_v})\\
90
+ \text{where}~\mathrm{head_i} &= \mathrm{Attention}(QW^Q_i, KW^K_i, VW^V_i)\\
91
+ \end{align*}
92
+
93
+ Where the projections are parameter matrices $W^Q_i \in \mathbb{R}^{\dmodel \times d_k}$, $W^K_i \in \mathbb{R}^{\dmodel \times d_k}$, $W^V_i \in \mathbb{R}^{\dmodel \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times \dmodel}$.
94
+
95
+
96
+ %find it better (and no more expensive) to have multiple parallel attention layers (each over the full set of positions) with proportionally lower-dimensional keys, values and queries. We call this "Multi-Head Attention" (Figure~\ref{fig:multi-head-att}). The keys, values, and queries for each of these parallel attention layers are computed by learned linear transformations of the inputs to the multi-head attention. We use different linear transformations across different parallel attention layers. The output of the parallel attention layers are concatenated, and then passed through a final learned linear transformation.
97
+
98
+ In this work we employ $h=8$ parallel attention layers, or heads. For each of these we use $d_k=d_v=\dmodel/h=64$.
99
+ Due to the reduced dimension of each head, the total computational cost is similar to that of single-head attention with full dimensionality.
100
+
101
+ \subsubsection{Applications of Attention in our Model}
102
+
103
+ The Transformer uses multi-head attention in three different ways:
104
+ \begin{itemize}
105
+ \item In "encoder-decoder attention" layers, the queries come from the previous decoder layer, and the memory keys and values come from the output of the encoder. This allows every position in the decoder to attend over all positions in the input sequence. This mimics the typical encoder-decoder attention mechanisms in sequence-to-sequence models such as \citep{wu2016google, bahdanau2014neural,JonasFaceNet2017}.
106
+
107
+ \item The encoder contains self-attention layers. In a self-attention layer all of the keys, values and queries come from the same place, in this case, the output of the previous layer in the encoder. Each position in the encoder can attend to all positions in the previous layer of the encoder.
108
+
109
+ \item Similarly, self-attention layers in the decoder allow each position in the decoder to attend to all positions in the decoder up to and including that position. We need to prevent leftward information flow in the decoder to preserve the auto-regressive property. We implement this inside of scaled dot-product attention by masking out (setting to $-\infty$) all values in the input of the softmax which correspond to illegal connections. See Figure~\ref{fig:multi-head-att}.
110
+
111
+ \end{itemize}
112
+
113
+ \subsection{Position-wise Feed-Forward Networks}\label{sec:ffn}
114
+
115
+ In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully connected feed-forward network, which is applied to each position separately and identically. This consists of two linear transformations with a ReLU activation in between.
116
+
117
+ \begin{equation}
118
+ \mathrm{FFN}(x)=\max(0, xW_1 + b_1) W_2 + b_2
119
+ \end{equation}
120
+
121
+ While the linear transformations are the same across different positions, they use different parameters from layer to layer. Another way of describing this is as two convolutions with kernel size 1. The dimensionality of input and output is $\dmodel=512$, and the inner-layer has dimensionality $d_{ff}=2048$.
122
+
123
+
124
+
125
+ %In the appendix, we describe how the position-wise feed-forward network can also be seen as a form of attention.
126
+
127
+ %from Jakob: The number of operations required for the model to relate signals from two arbitrary input or output positions grows in the distance between positions in input or output, linearly for ConvS2S and logarithmically for ByteNet, making it harder to learn dependencies between these positions \citep{hochreiter2001gradient}. In the transformer this is reduced to a constant number of operations, albeit at the cost of effective resolution caused by averaging attention-weighted positions, an effect we aim to counteract with multi-headed attention.
128
+
129
+
130
+ %Figure~\ref{fig:simple-att} presents a simple attention function, $A$, with a single head, that forms the basis of our multi-head attention. $A$ takes a query key vector $\kq$, matrices of memory keys $\km$ and memory values $\vm$ ,and produces a query value vector $\vq$ as
131
+ %\begin{equation*} \label{eq:attention}
132
+ % A(\kq, \km, \vm) = {\vm}^T (Softmax(\km \kq).
133
+ %\end{equation*}
134
+ %We linearly transform $\kq,\,\km$, and $\vm$ with learned matrices ${\Wkq \text{,} \, \Wkm}$, and ${\Wvm}$ before calling the attention function, and transform the output query with $\Wvq$ before handing it to the feed forward layer. Each attention layer has it's own set of transformation matrices, which are shared across all query positions. $A$ is applied in parallel for each query position, and is implemented very efficiently as a batch of matrix multiplies. The self-attention and encoder-decoder attention layers use $A$, but with different arguments. For example, in encdoder self-attention, queries in encoder layer $i$ attention to memories in encoder layer $i-1$. To ensure that decoder self-attention layers do not look at future words, we add $- \inf$ to the softmax logits in positions $j+1$ to query length for query position $l$.
135
+
136
+ %In simple attention, the query value is a weighted combination of the memory values where the attention weights sum to one. Although this function performs well in practice, the constraint on attention weights can restrict the amount of information that flows from memories to queries because the query cannot focus on multiple memory positions at once, which might be desirable when translating long sequences. \marginpar{@usz, could you think of an example of this ?} We remedy this by maintaining multiple attention heads at each query position that attend to all memory positions in parallel, with a different set of parameters per attention head $h$.
137
+ %\marginpar{}
138
+
139
+ \subsection{Embeddings and Softmax}
140
+ Similarly to other sequence transduction models, we use learned embeddings to convert the input tokens and output tokens to vectors of dimension $\dmodel$. We also use the usual learned linear transformation and softmax function to convert the decoder output to predicted next-token probabilities. In our model, we share the same weight matrix between the two embedding layers and the pre-softmax linear transformation, similar to \citep{press2016using}. In the embedding layers, we multiply those weights by $\sqrt{\dmodel}$.
141
+
142
+
143
+ \subsection{Positional Encoding}
144
+ Since our model contains no recurrence and no convolution, in order for the model to make use of the order of the sequence, we must inject some information about the relative or absolute position of the tokens in the sequence. To this end, we add "positional encodings" to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $\dmodel$ as the embeddings, so that the two can be summed. There are many choices of positional encodings, learned and fixed \citep{JonasFaceNet2017}.
145
+
146
+ In this work, we use sine and cosine functions of different frequencies:
147
+
148
+ \begin{align*}
149
+ PE_{(pos,2i)} = sin(pos / 10000^{2i/\dmodel}) \\
150
+ PE_{(pos,2i+1)} = cos(pos / 10000^{2i/\dmodel})
151
+ \end{align*}
152
+
153
+ where $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\pi$ to $10000 \cdot 2\pi$. We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $PE_{pos+k}$ can be represented as a linear function of $PE_{pos}$.
154
+
155
+ We also experimented with using learned positional embeddings \citep{JonasFaceNet2017} instead, and found that the two versions produced nearly identical results (see Table~\ref{tab:variations} row (E)). We chose the sinusoidal version because it may allow the model to extrapolate to sequence lengths longer than the ones encountered during training.
crazy_functions/test_project/latex/attention/parameter_attention.tex ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ \pagebreak
2
+ \section*{Two Feed-Forward Layers = Attention over Parameters}\label{sec:parameter_attention}
3
+
4
+ In addition to attention layers, our model contains position-wise feed-forward networks (Section \ref{sec:ffn}), which consist of two linear transformations with a ReLU activation in between. In fact, these networks too can be seen as a form of attention. Compare the formula for such a network with the formula for a simple dot-product attention layer (biases and scaling factors omitted):
5
+
6
+ \begin{align*}
7
+ FFN(x, W_1, W_2) = ReLU(xW_1)W_2 \\
8
+ A(q, K, V) = Softmax(qK^T)V
9
+ \end{align*}
10
+
11
+ Based on the similarity of these formulae, the two-layer feed-forward network can be seen as a kind of attention, where the keys and values are the rows of the trainable parameter matrices $W_1$ and $W_2$, and where we use ReLU instead of Softmax in the compatibility function.
12
+
13
+ %the compatablity function is $compat(q, k_i) = ReLU(q \cdot k_i)$ instead of $Softmax(qK_T)_i$.
14
+
15
+ Given this similarity, we experimented with replacing the position-wise feed-forward networks with attention layers similar to the ones we use everywhere else our model. The multi-head-attention-over-parameters sublayer is identical to the multi-head attention described in \ref{sec:multihead}, except that the "keys" and "values" inputs to each attention head are trainable model parameters, as opposed to being linear projections of a previous layer. These parameters are scaled up by a factor of $\sqrt{d_{model}}$ in order to be more similar to activations.
16
+
17
+ In our first experiment, we replaced each position-wise feed-forward network with a multi-head-attention-over-parameters sublayer with $h_p=8$ heads, key-dimensionality $d_{pk}=64$, and value-dimensionality $d_{pv}=64$, using $n_p=1536$ key-value pairs for each attention head. The sublayer has a total of $2097152$ parameters, including the parameters in the query projection and the output projection. This matches the number of parameters in the position-wise feed-forward network that we replaced. While the theoretical amount of computation is also the same, in practice, the attention version caused the step times to be about 30\% longer.
18
+
19
+ In our second experiment, we used $h_p=8$ heads, and $n_p=512$ key-value pairs for each attention head, again matching the total number of parameters in the base model.
20
+
21
+ Results for the first experiment were slightly worse than for the base model, and results for the second experiment were slightly better, see Table~\ref{tab:parameter_attention}.
22
+
23
+ \begin{table}[h]
24
+ \caption{Replacing the position-wise feed-forward networks with multihead-attention-over-parameters produces similar results to the base model. All metrics are on the English-to-German translation development set, newstest2013.}
25
+ \label{tab:parameter_attention}
26
+ \begin{center}
27
+ \vspace{-2mm}
28
+ %\scalebox{1.0}{
29
+ \begin{tabular}{c|cccccc|cccc}
30
+ \hline\rule{0pt}{2.0ex}
31
+ & \multirow{2}{*}{$\dmodel$} & \multirow{2}{*}{$\dff$} &
32
+ \multirow{2}{*}{$h_p$} & \multirow{2}{*}{$d_{pk}$} & \multirow{2}{*}{$d_{pv}$} &
33
+ \multirow{2}{*}{$n_p$} &
34
+ PPL & BLEU & params & training\\
35
+ & & & & & & & (dev) & (dev) & $\times10^6$ & time \\
36
+ \hline\rule{0pt}{2.0ex}
37
+ base & 512 & 2048 & & & & & 4.92 & 25.8 & 65 & 12 hours\\
38
+ \hline\rule{0pt}{2.0ex}
39
+ AOP$_1$ & 512 & & 8 & 64 & 64 & 1536 & 4.92& 25.5 & 65 & 16 hours\\
40
+ AOP$_2$ & 512 & & 16 & 64 & 64 & 512 & \textbf{4.86} & \textbf{25.9} & 65 & 16 hours \\
41
+ \hline
42
+ \end{tabular}
43
+ %}
44
+ \end{center}
45
+ \end{table}
crazy_functions/test_project/latex/attention/来源 ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ chatgpt的老祖宗《Attention is all you need》
2
+
3
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
4
+
5
+ 真实的摘要如下
6
+ The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
7
+
8
+ https://arxiv.org/abs/1706.03762
crazy_functions/test_project/python/dqn/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from stable_baselines3.dqn.dqn import DQN
2
+ from stable_baselines3.dqn.policies import CnnPolicy, MlpPolicy
crazy_functions/test_project/python/dqn/dqn.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List, Optional, Tuple, Type, Union
2
+
3
+ import gym
4
+ import numpy as np
5
+ import torch as th
6
+ from torch.nn import functional as F
7
+
8
+ from stable_baselines3.common import logger
9
+ from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
10
+ from stable_baselines3.common.preprocessing import maybe_transpose
11
+ from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
12
+ from stable_baselines3.common.utils import get_linear_fn, is_vectorized_observation, polyak_update
13
+ from stable_baselines3.dqn.policies import DQNPolicy
14
+
15
+
16
+ class DQN(OffPolicyAlgorithm):
17
+ """
18
+ Deep Q-Network (DQN)
19
+
20
+ Paper: https://arxiv.org/abs/1312.5602, https://www.nature.com/articles/nature14236
21
+ Default hyperparameters are taken from the nature paper,
22
+ except for the optimizer and learning rate that were taken from Stable Baselines defaults.
23
+
24
+ :param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
25
+ :param env: The environment to learn from (if registered in Gym, can be str)
26
+ :param learning_rate: The learning rate, it can be a function
27
+ of the current progress remaining (from 1 to 0)
28
+ :param buffer_size: size of the replay buffer
29
+ :param learning_starts: how many steps of the model to collect transitions for before learning starts
30
+ :param batch_size: Minibatch size for each gradient update
31
+ :param tau: the soft update coefficient ("Polyak update", between 0 and 1) default 1 for hard update
32
+ :param gamma: the discount factor
33
+ :param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
34
+ like ``(5, "step")`` or ``(2, "episode")``.
35
+ :param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
36
+ Set to ``-1`` means to do as many gradient steps as steps done in the environment
37
+ during the rollout.
38
+ :param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
39
+ at a cost of more complexity.
40
+ See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
41
+ :param target_update_interval: update the target network every ``target_update_interval``
42
+ environment steps.
43
+ :param exploration_fraction: fraction of entire training period over which the exploration rate is reduced
44
+ :param exploration_initial_eps: initial value of random action probability
45
+ :param exploration_final_eps: final value of random action probability
46
+ :param max_grad_norm: The maximum value for the gradient clipping
47
+ :param tensorboard_log: the log location for tensorboard (if None, no logging)
48
+ :param create_eval_env: Whether to create a second environment that will be
49
+ used for evaluating the agent periodically. (Only available when passing string for the environment)
50
+ :param policy_kwargs: additional arguments to be passed to the policy on creation
51
+ :param verbose: the verbosity level: 0 no output, 1 info, 2 debug
52
+ :param seed: Seed for the pseudo random generators
53
+ :param device: Device (cpu, cuda, ...) on which the code should be run.
54
+ Setting it to auto, the code will be run on the GPU if possible.
55
+ :param _init_setup_model: Whether or not to build the network at the creation of the instance
56
+ """
57
+
58
+ def __init__(
59
+ self,
60
+ policy: Union[str, Type[DQNPolicy]],
61
+ env: Union[GymEnv, str],
62
+ learning_rate: Union[float, Schedule] = 1e-4,
63
+ buffer_size: int = 1000000,
64
+ learning_starts: int = 50000,
65
+ batch_size: Optional[int] = 32,
66
+ tau: float = 1.0,
67
+ gamma: float = 0.99,
68
+ train_freq: Union[int, Tuple[int, str]] = 4,
69
+ gradient_steps: int = 1,
70
+ optimize_memory_usage: bool = False,
71
+ target_update_interval: int = 10000,
72
+ exploration_fraction: float = 0.1,
73
+ exploration_initial_eps: float = 1.0,
74
+ exploration_final_eps: float = 0.05,
75
+ max_grad_norm: float = 10,
76
+ tensorboard_log: Optional[str] = None,
77
+ create_eval_env: bool = False,
78
+ policy_kwargs: Optional[Dict[str, Any]] = None,
79
+ verbose: int = 0,
80
+ seed: Optional[int] = None,
81
+ device: Union[th.device, str] = "auto",
82
+ _init_setup_model: bool = True,
83
+ ):
84
+
85
+ super(DQN, self).__init__(
86
+ policy,
87
+ env,
88
+ DQNPolicy,
89
+ learning_rate,
90
+ buffer_size,
91
+ learning_starts,
92
+ batch_size,
93
+ tau,
94
+ gamma,
95
+ train_freq,
96
+ gradient_steps,
97
+ action_noise=None, # No action noise
98
+ policy_kwargs=policy_kwargs,
99
+ tensorboard_log=tensorboard_log,
100
+ verbose=verbose,
101
+ device=device,
102
+ create_eval_env=create_eval_env,
103
+ seed=seed,
104
+ sde_support=False,
105
+ optimize_memory_usage=optimize_memory_usage,
106
+ supported_action_spaces=(gym.spaces.Discrete,),
107
+ )
108
+
109
+ self.exploration_initial_eps = exploration_initial_eps
110
+ self.exploration_final_eps = exploration_final_eps
111
+ self.exploration_fraction = exploration_fraction
112
+ self.target_update_interval = target_update_interval
113
+ self.max_grad_norm = max_grad_norm
114
+ # "epsilon" for the epsilon-greedy exploration
115
+ self.exploration_rate = 0.0
116
+ # Linear schedule will be defined in `_setup_model()`
117
+ self.exploration_schedule = None
118
+ self.q_net, self.q_net_target = None, None
119
+
120
+ if _init_setup_model:
121
+ self._setup_model()
122
+
123
+ def _setup_model(self) -> None:
124
+ super(DQN, self)._setup_model()
125
+ self._create_aliases()
126
+ self.exploration_schedule = get_linear_fn(
127
+ self.exploration_initial_eps, self.exploration_final_eps, self.exploration_fraction
128
+ )
129
+
130
+ def _create_aliases(self) -> None:
131
+ self.q_net = self.policy.q_net
132
+ self.q_net_target = self.policy.q_net_target
133
+
134
+ def _on_step(self) -> None:
135
+ """
136
+ Update the exploration rate and target network if needed.
137
+ This method is called in ``collect_rollouts()`` after each step in the environment.
138
+ """
139
+ if self.num_timesteps % self.target_update_interval == 0:
140
+ polyak_update(self.q_net.parameters(), self.q_net_target.parameters(), self.tau)
141
+
142
+ self.exploration_rate = self.exploration_schedule(self._current_progress_remaining)
143
+ logger.record("rollout/exploration rate", self.exploration_rate)
144
+
145
+ def train(self, gradient_steps: int, batch_size: int = 100) -> None:
146
+ # Update learning rate according to schedule
147
+ self._update_learning_rate(self.policy.optimizer)
148
+
149
+ losses = []
150
+ for _ in range(gradient_steps):
151
+ # Sample replay buffer
152
+ replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
153
+
154
+ with th.no_grad():
155
+ # Compute the next Q-values using the target network
156
+ next_q_values = self.q_net_target(replay_data.next_observations)
157
+ # Follow greedy policy: use the one with the highest value
158
+ next_q_values, _ = next_q_values.max(dim=1)
159
+ # Avoid potential broadcast issue
160
+ next_q_values = next_q_values.reshape(-1, 1)
161
+ # 1-step TD target
162
+ target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
163
+
164
+ # Get current Q-values estimates
165
+ current_q_values = self.q_net(replay_data.observations)
166
+
167
+ # Retrieve the q-values for the actions from the replay buffer
168
+ current_q_values = th.gather(current_q_values, dim=1, index=replay_data.actions.long())
169
+
170
+ # Compute Huber loss (less sensitive to outliers)
171
+ loss = F.smooth_l1_loss(current_q_values, target_q_values)
172
+ losses.append(loss.item())
173
+
174
+ # Optimize the policy
175
+ self.policy.optimizer.zero_grad()
176
+ loss.backward()
177
+ # Clip gradient norm
178
+ th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
179
+ self.policy.optimizer.step()
180
+
181
+ # Increase update counter
182
+ self._n_updates += gradient_steps
183
+
184
+ logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
185
+ logger.record("train/loss", np.mean(losses))
186
+
187
+ def predict(
188
+ self,
189
+ observation: np.ndarray,
190
+ state: Optional[np.ndarray] = None,
191
+ mask: Optional[np.ndarray] = None,
192
+ deterministic: bool = False,
193
+ ) -> Tuple[np.ndarray, Optional[np.ndarray]]:
194
+ """
195
+ Overrides the base_class predict function to include epsilon-greedy exploration.
196
+
197
+ :param observation: the input observation
198
+ :param state: The last states (can be None, used in recurrent policies)
199
+ :param mask: The last masks (can be None, used in recurrent policies)
200
+ :param deterministic: Whether or not to return deterministic actions.
201
+ :return: the model's action and the next state
202
+ (used in recurrent policies)
203
+ """
204
+ if not deterministic and np.random.rand() < self.exploration_rate:
205
+ if is_vectorized_observation(maybe_transpose(observation, self.observation_space), self.observation_space):
206
+ n_batch = observation.shape[0]
207
+ action = np.array([self.action_space.sample() for _ in range(n_batch)])
208
+ else:
209
+ action = np.array(self.action_space.sample())
210
+ else:
211
+ action, state = self.policy.predict(observation, state, mask, deterministic)
212
+ return action, state
213
+
214
+ def learn(
215
+ self,
216
+ total_timesteps: int,
217
+ callback: MaybeCallback = None,
218
+ log_interval: int = 4,
219
+ eval_env: Optional[GymEnv] = None,
220
+ eval_freq: int = -1,
221
+ n_eval_episodes: int = 5,
222
+ tb_log_name: str = "DQN",
223
+ eval_log_path: Optional[str] = None,
224
+ reset_num_timesteps: bool = True,
225
+ ) -> OffPolicyAlgorithm:
226
+
227
+ return super(DQN, self).learn(
228
+ total_timesteps=total_timesteps,
229
+ callback=callback,
230
+ log_interval=log_interval,
231
+ eval_env=eval_env,
232
+ eval_freq=eval_freq,
233
+ n_eval_episodes=n_eval_episodes,
234
+ tb_log_name=tb_log_name,
235
+ eval_log_path=eval_log_path,
236
+ reset_num_timesteps=reset_num_timesteps,
237
+ )
238
+
239
+ def _excluded_save_params(self) -> List[str]:
240
+ return super(DQN, self)._excluded_save_params() + ["q_net", "q_net_target"]
241
+
242
+ def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
243
+ state_dicts = ["policy", "policy.optimizer"]
244
+
245
+ return state_dicts, []
crazy_functions/test_project/python/dqn/policies.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List, Optional, Type
2
+
3
+ import gym
4
+ import torch as th
5
+ from torch import nn
6
+
7
+ from stable_baselines3.common.policies import BasePolicy, register_policy
8
+ from stable_baselines3.common.torch_layers import BaseFeaturesExtractor, FlattenExtractor, NatureCNN, create_mlp
9
+ from stable_baselines3.common.type_aliases import Schedule
10
+
11
+
12
+ class QNetwork(BasePolicy):
13
+ """
14
+ Action-Value (Q-Value) network for DQN
15
+
16
+ :param observation_space: Observation space
17
+ :param action_space: Action space
18
+ :param net_arch: The specification of the policy and value networks.
19
+ :param activation_fn: Activation function
20
+ :param normalize_images: Whether to normalize images or not,
21
+ dividing by 255.0 (True by default)
22
+ """
23
+
24
+ def __init__(
25
+ self,
26
+ observation_space: gym.spaces.Space,
27
+ action_space: gym.spaces.Space,
28
+ features_extractor: nn.Module,
29
+ features_dim: int,
30
+ net_arch: Optional[List[int]] = None,
31
+ activation_fn: Type[nn.Module] = nn.ReLU,
32
+ normalize_images: bool = True,
33
+ ):
34
+ super(QNetwork, self).__init__(
35
+ observation_space,
36
+ action_space,
37
+ features_extractor=features_extractor,
38
+ normalize_images=normalize_images,
39
+ )
40
+
41
+ if net_arch is None:
42
+ net_arch = [64, 64]
43
+
44
+ self.net_arch = net_arch
45
+ self.activation_fn = activation_fn
46
+ self.features_extractor = features_extractor
47
+ self.features_dim = features_dim
48
+ self.normalize_images = normalize_images
49
+ action_dim = self.action_space.n # number of actions
50
+ q_net = create_mlp(self.features_dim, action_dim, self.net_arch, self.activation_fn)
51
+ self.q_net = nn.Sequential(*q_net)
52
+
53
+ def forward(self, obs: th.Tensor) -> th.Tensor:
54
+ """
55
+ Predict the q-values.
56
+
57
+ :param obs: Observation
58
+ :return: The estimated Q-Value for each action.
59
+ """
60
+ return self.q_net(self.extract_features(obs))
61
+
62
+ def _predict(self, observation: th.Tensor, deterministic: bool = True) -> th.Tensor:
63
+ q_values = self.forward(observation)
64
+ # Greedy action
65
+ action = q_values.argmax(dim=1).reshape(-1)
66
+ return action
67
+
68
+ def _get_constructor_parameters(self) -> Dict[str, Any]:
69
+ data = super()._get_constructor_parameters()
70
+
71
+ data.update(
72
+ dict(
73
+ net_arch=self.net_arch,
74
+ features_dim=self.features_dim,
75
+ activation_fn=self.activation_fn,
76
+ features_extractor=self.features_extractor,
77
+ )
78
+ )
79
+ return data
80
+
81
+
82
+ class DQNPolicy(BasePolicy):
83
+ """
84
+ Policy class with Q-Value Net and target net for DQN
85
+
86
+ :param observation_space: Observation space
87
+ :param action_space: Action space
88
+ :param lr_schedule: Learning rate schedule (could be constant)
89
+ :param net_arch: The specification of the policy and value networks.
90
+ :param activation_fn: Activation function
91
+ :param features_extractor_class: Features extractor to use.
92
+ :param features_extractor_kwargs: Keyword arguments
93
+ to pass to the features extractor.
94
+ :param normalize_images: Whether to normalize images or not,
95
+ dividing by 255.0 (True by default)
96
+ :param optimizer_class: The optimizer to use,
97
+ ``th.optim.Adam`` by default
98
+ :param optimizer_kwargs: Additional keyword arguments,
99
+ excluding the learning rate, to pass to the optimizer
100
+ """
101
+
102
+ def __init__(
103
+ self,
104
+ observation_space: gym.spaces.Space,
105
+ action_space: gym.spaces.Space,
106
+ lr_schedule: Schedule,
107
+ net_arch: Optional[List[int]] = None,
108
+ activation_fn: Type[nn.Module] = nn.ReLU,
109
+ features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor,
110
+ features_extractor_kwargs: Optional[Dict[str, Any]] = None,
111
+ normalize_images: bool = True,
112
+ optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
113
+ optimizer_kwargs: Optional[Dict[str, Any]] = None,
114
+ ):
115
+ super(DQNPolicy, self).__init__(
116
+ observation_space,
117
+ action_space,
118
+ features_extractor_class,
119
+ features_extractor_kwargs,
120
+ optimizer_class=optimizer_class,
121
+ optimizer_kwargs=optimizer_kwargs,
122
+ )
123
+
124
+ if net_arch is None:
125
+ if features_extractor_class == FlattenExtractor:
126
+ net_arch = [64, 64]
127
+ else:
128
+ net_arch = []
129
+
130
+ self.net_arch = net_arch
131
+ self.activation_fn = activation_fn
132
+ self.normalize_images = normalize_images
133
+
134
+ self.net_args = {
135
+ "observation_space": self.observation_space,
136
+ "action_space": self.action_space,
137
+ "net_arch": self.net_arch,
138
+ "activation_fn": self.activation_fn,
139
+ "normalize_images": normalize_images,
140
+ }
141
+
142
+ self.q_net, self.q_net_target = None, None
143
+ self._build(lr_schedule)
144
+
145
+ def _build(self, lr_schedule: Schedule) -> None:
146
+ """
147
+ Create the network and the optimizer.
148
+
149
+ :param lr_schedule: Learning rate schedule
150
+ lr_schedule(1) is the initial learning rate
151
+ """
152
+
153
+ self.q_net = self.make_q_net()
154
+ self.q_net_target = self.make_q_net()
155
+ self.q_net_target.load_state_dict(self.q_net.state_dict())
156
+
157
+ # Setup optimizer with initial learning rate
158
+ self.optimizer = self.optimizer_class(self.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs)
159
+
160
+ def make_q_net(self) -> QNetwork:
161
+ # Make sure we always have separate networks for features extractors etc
162
+ net_args = self._update_features_extractor(self.net_args, features_extractor=None)
163
+ return QNetwork(**net_args).to(self.device)
164
+
165
+ def forward(self, obs: th.Tensor, deterministic: bool = True) -> th.Tensor:
166
+ return self._predict(obs, deterministic=deterministic)
167
+
168
+ def _predict(self, obs: th.Tensor, deterministic: bool = True) -> th.Tensor:
169
+ return self.q_net._predict(obs, deterministic=deterministic)
170
+
171
+ def _get_constructor_parameters(self) -> Dict[str, Any]:
172
+ data = super()._get_constructor_parameters()
173
+
174
+ data.update(
175
+ dict(
176
+ net_arch=self.net_args["net_arch"],
177
+ activation_fn=self.net_args["activation_fn"],
178
+ lr_schedule=self._dummy_schedule, # dummy lr schedule, not needed for loading policy alone
179
+ optimizer_class=self.optimizer_class,
180
+ optimizer_kwargs=self.optimizer_kwargs,
181
+ features_extractor_class=self.features_extractor_class,
182
+ features_extractor_kwargs=self.features_extractor_kwargs,
183
+ )
184
+ )
185
+ return data
186
+
187
+
188
+ MlpPolicy = DQNPolicy
189
+
190
+
191
+ class CnnPolicy(DQNPolicy):
192
+ """
193
+ Policy class for DQN when using images as input.
194
+
195
+ :param observation_space: Observation space
196
+ :param action_space: Action space
197
+ :param lr_schedule: Learning rate schedule (could be constant)
198
+ :param net_arch: The specification of the policy and value networks.
199
+ :param activation_fn: Activation function
200
+ :param features_extractor_class: Features extractor to use.
201
+ :param normalize_images: Whether to normalize images or not,
202
+ dividing by 255.0 (True by default)
203
+ :param optimizer_class: The optimizer to use,
204
+ ``th.optim.Adam`` by default
205
+ :param optimizer_kwargs: Additional keyword arguments,
206
+ excluding the learning rate, to pass to the optimizer
207
+ """
208
+
209
+ def __init__(
210
+ self,
211
+ observation_space: gym.spaces.Space,
212
+ action_space: gym.spaces.Space,
213
+ lr_schedule: Schedule,
214
+ net_arch: Optional[List[int]] = None,
215
+ activation_fn: Type[nn.Module] = nn.ReLU,
216
+ features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN,
217
+ features_extractor_kwargs: Optional[Dict[str, Any]] = None,
218
+ normalize_images: bool = True,
219
+ optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
220
+ optimizer_kwargs: Optional[Dict[str, Any]] = None,
221
+ ):
222
+ super(CnnPolicy, self).__init__(
223
+ observation_space,
224
+ action_space,
225
+ lr_schedule,
226
+ net_arch,
227
+ activation_fn,
228
+ features_extractor_class,
229
+ features_extractor_kwargs,
230
+ normalize_images,
231
+ optimizer_class,
232
+ optimizer_kwargs,
233
+ )
234
+
235
+
236
+ register_policy("MlpPolicy", MlpPolicy)
237
+ register_policy("CnnPolicy", CnnPolicy)
crazy_functions/test_project/python/dqn/来源 ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ github stablebaseline3
2
+ https://github.com/DLR-RM/stable-baselines3
crazy_functions/test_project/其他测试 ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ "In practice, we found that a high-entropy initial state is more likely to increase the speed of training.
2
+ The entropy is calculated by:
3
+ $$H=-\sum_{k= 1}^{n_k} p(k) \cdot \log p(k), p(k)=\frac{|A_k|}{|\mathcal{A}|}$$
4
+ where $H$ is the entropy, $|A_k|$ is the number of agent nodes in $k$-th cluster, $|\mathcal{A}|$ is the total number of agents.
5
+ To ensure the Cooperation Graph initialization has higher entropy,
6
+ we will randomly generate multiple initial states,
7
+ rank by their entropy and then pick the one with maximum $H$."
8
+
9
+ ```
10
+ FROM ubuntu:latest
11
+
12
+ RUN apt-get update && \
13
+ apt-get install -y python3 python3-pip && \
14
+ rm -rf /var/lib/apt/lists/*
15
+
16
+ RUN echo '[global]' > /etc/pip.conf && \
17
+ echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
18
+ echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
19
+
20
+ RUN pip3 install gradio requests[socks] mdtex2html
21
+
22
+ COPY . /gpt
23
+ WORKDIR /gpt
24
+
25
+
26
+ CMD ["python3", "main.py"]
27
+ ```
crazy_functions/生成函数注释.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from predict import predict_no_ui
2
+ from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
+ fast_debug = False
4
+
5
+
6
+ def 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
7
+ import time, glob, os
8
+ print('begin analysis on:', file_manifest)
9
+ for index, fp in enumerate(file_manifest):
10
+ with open(fp, 'r', encoding='utf-8') as f:
11
+ file_content = f.read()
12
+
13
+ i_say = f'请对下面的程序文件做一个概述,并对文件中的所有函数生成注释,使用markdown表格输出结果,文件名是{os.path.relpath(fp, project_folder)},文件内容是 ```{file_content}```'
14
+ i_say_show_user = f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述,并对文件中的所有函数生成注释: {os.path.abspath(fp)}'
15
+ chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
16
+ print('[1] yield chatbot, history')
17
+ yield chatbot, history, '正常'
18
+
19
+ if not fast_debug:
20
+ msg = '正常'
21
+ # ** gpt request **
22
+ gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
23
+
24
+ print('[2] end gpt req')
25
+ chatbot[-1] = (i_say_show_user, gpt_say)
26
+ history.append(i_say_show_user); history.append(gpt_say)
27
+ print('[3] yield chatbot, history')
28
+ yield chatbot, history, msg
29
+ print('[4] next')
30
+ if not fast_debug: time.sleep(2)
31
+
32
+ if not fast_debug:
33
+ res = write_results_to_file(history)
34
+ chatbot.append(("完成了吗?", res))
35
+ yield chatbot, history, msg
36
+
37
+
38
+
39
+ @CatchException
40
+ def 批量生成函数注释(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
41
+ history = [] # 清空历史,以免输入溢出
42
+ import glob, os
43
+ if os.path.exists(txt):
44
+ project_folder = txt
45
+ else:
46
+ if txt == "": txt = '空空如也的输入栏'
47
+ report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
48
+ yield chatbot, history, '正常'
49
+ return
50
+ file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)] + \
51
+ [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)]
52
+
53
+ if len(file_manifest) == 0:
54
+ report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
55
+ yield chatbot, history, '正常'
56
+ return
57
+ yield from 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
crazy_functions/解析项目源代码.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from predict import predict_no_ui
2
+ from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
+ fast_debug = False
4
+
5
+ def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
6
+ import time, glob, os
7
+ print('begin analysis on:', file_manifest)
8
+ for index, fp in enumerate(file_manifest):
9
+ with open(fp, 'r', encoding='utf-8') as f:
10
+ file_content = f.read()
11
+
12
+ 前言 = "接下来请你逐文件分析下面的工程" if index==0 else ""
13
+ i_say = 前言 + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
14
+ i_say_show_user = 前言 + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
15
+ chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
16
+ yield chatbot, history, '正常'
17
+
18
+ if not fast_debug:
19
+ msg = '正常'
20
+
21
+ # ** gpt request **
22
+ gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
23
+
24
+ chatbot[-1] = (i_say_show_user, gpt_say)
25
+ history.append(i_say_show_user); history.append(gpt_say)
26
+ yield chatbot, history, msg
27
+ if not fast_debug: time.sleep(2)
28
+
29
+ all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
30
+ i_say = f'根据以上你自己的分析,对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能(包括{all_file})。'
31
+ chatbot.append((i_say, "[Local Message] waiting gpt response."))
32
+ yield chatbot, history, '正常'
33
+
34
+ if not fast_debug:
35
+ msg = '正常'
36
+ # ** gpt request **
37
+ gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
38
+
39
+ chatbot[-1] = (i_say, gpt_say)
40
+ history.append(i_say); history.append(gpt_say)
41
+ yield chatbot, history, msg
42
+ res = write_results_to_file(history)
43
+ chatbot.append(("完成了吗?", res))
44
+ yield chatbot, history, msg
45
+
46
+
47
+
48
+
49
+ @CatchException
50
+ def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
51
+ history = [] # 清空历史,以免输入溢出
52
+ import time, glob, os
53
+ file_manifest = [f for f in glob.glob('*.py')]
54
+ for index, fp in enumerate(file_manifest):
55
+ # if 'test_project' in fp: continue
56
+ with open(fp, 'r', encoding='utf-8') as f:
57
+ file_content = f.read()
58
+
59
+ 前言 = "接下来请你分析自己的程序构成,别紧张," if index==0 else ""
60
+ i_say = 前言 + f'请对下面的程序文件做一个概述文件名是{fp},文件代码是 ```{file_content}```'
61
+ i_say_show_user = 前言 + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
62
+ chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
63
+ yield chatbot, history, '正常'
64
+
65
+ if not fast_debug:
66
+ # ** gpt request **
67
+ # gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature)
68
+ gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
69
+
70
+ chatbot[-1] = (i_say_show_user, gpt_say)
71
+ history.append(i_say_show_user); history.append(gpt_say)
72
+ yield chatbot, history, '正常'
73
+ time.sleep(2)
74
+
75
+ i_say = f'根据以上你自己的分析,对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能(包括{file_manifest})。'
76
+ chatbot.append((i_say, "[Local Message] waiting gpt response."))
77
+ yield chatbot, history, '正常'
78
+
79
+ if not fast_debug:
80
+ # ** gpt request **
81
+ # gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history)
82
+ gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
83
+
84
+ chatbot[-1] = (i_say, gpt_say)
85
+ history.append(i_say); history.append(gpt_say)
86
+ yield chatbot, history, '正常'
87
+ res = write_results_to_file(history)
88
+ chatbot.append(("完成了吗?", res))
89
+ yield chatbot, history, '正常'
90
+
91
+ @CatchException
92
+ def 解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
93
+ history = [] # 清空历史,以免输入溢出
94
+ import glob, os
95
+ if os.path.exists(txt):
96
+ project_folder = txt
97
+ else:
98
+ if txt == "": txt = '空空如也的输入栏'
99
+ report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
100
+ yield chatbot, history, '正常'
101
+ return
102
+ file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)]
103
+ if len(file_manifest) == 0:
104
+ report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
105
+ yield chatbot, history, '正常'
106
+ return
107
+ yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
108
+
109
+
110
+ @CatchException
111
+ def 解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
112
+ history = [] # 清空历史,以免输入溢出
113
+ import glob, os
114
+ if os.path.exists(txt):
115
+ project_folder = txt
116
+ else:
117
+ if txt == "": txt = '空空如也的输入栏'
118
+ report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
119
+ yield chatbot, history, '正常'
120
+ return
121
+ file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] # + \
122
+ # [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
123
+ # [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
124
+ if len(file_manifest) == 0:
125
+ report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
126
+ yield chatbot, history, '正常'
127
+ return
128
+ yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
129
+
crazy_functions/读文章写摘要.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from predict import predict_no_ui
2
+ from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
+ fast_debug = False
4
+
5
+
6
+ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
7
+ import time, glob, os
8
+ print('begin analysis on:', file_manifest)
9
+ for index, fp in enumerate(file_manifest):
10
+ with open(fp, 'r', encoding='utf-8') as f:
11
+ file_content = f.read()
12
+
13
+ 前言 = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
14
+ i_say = 前言 + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
15
+ i_say_show_user = 前言 + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
16
+ chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
17
+ print('[1] yield chatbot, history')
18
+ yield chatbot, history, '正常'
19
+
20
+ if not fast_debug:
21
+ msg = '正常'
22
+ # ** gpt request **
23
+ gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
24
+
25
+ print('[2] end gpt req')
26
+ chatbot[-1] = (i_say_show_user, gpt_say)
27
+ history.append(i_say_show_user); history.append(gpt_say)
28
+ print('[3] yield chatbot, history')
29
+ yield chatbot, history, msg
30
+ print('[4] next')
31
+ if not fast_debug: time.sleep(2)
32
+
33
+ all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
34
+ i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
35
+ chatbot.append((i_say, "[Local Message] waiting gpt response."))
36
+ yield chatbot, history, '正常'
37
+
38
+ if not fast_debug:
39
+ msg = '正常'
40
+ # ** gpt request **
41
+ gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
42
+
43
+ chatbot[-1] = (i_say, gpt_say)
44
+ history.append(i_say); history.append(gpt_say)
45
+ yield chatbot, history, msg
46
+ res = write_results_to_file(history)
47
+ chatbot.append(("完成了吗?", res))
48
+ yield chatbot, history, msg
49
+
50
+
51
+
52
+ @CatchException
53
+ def 读文章写摘要(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
54
+ history = [] # 清空历史,以免输入溢出
55
+ import glob, os
56
+ if os.path.exists(txt):
57
+ project_folder = txt
58
+ else:
59
+ if txt == "": txt = '空空如也的输入栏'
60
+ report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
61
+ yield chatbot, history, '正常'
62
+ return
63
+ file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \
64
+ # [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
65
+ # [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
66
+ if len(file_manifest) == 0:
67
+ report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
68
+ yield chatbot, history, '正常'
69
+ return
70
+ yield from 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
crazy_functions/高级功能函数模板.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from predict import predict_no_ui
2
+ from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
+ fast_debug = False
4
+
5
+ @CatchException
6
+ def 高阶功能模板函数(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
7
+ history = [] # 清空历史,以免输入溢出
8
+ for i in range(5):
9
+ i_say = f'我给出一个数字,你给出该数字的平方。我给出数字:{i}'
10
+ chatbot.append((i_say, "[Local Message] waiting gpt response."))
11
+ yield chatbot, history, '正常' # 由于请求gpt需要一段时间,我们先及时地做一次状态显示
12
+
13
+ gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature) # 请求gpt,需要一段时间
14
+
15
+ chatbot[-1] = (i_say, gpt_say)
16
+ history.append(i_say);history.append(gpt_say)
17
+ yield chatbot, history, '正常' # 显示
functional.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # """
2
+ # 'primary' for main call-to-action,
3
+ # 'secondary' for a more subdued style,
4
+ # 'stop' for a stop button.
5
+ # """
6
+
7
+
8
+ def get_functionals():
9
+ return {
10
+ "英语学术润色": {
11
+ "Prefix": "Below is a paragraph from an academic paper. Polish the writing to meet the academic style, \
12
+ improve the spelling, grammar, clarity, concision and overall readability. When neccessary, rewrite the whole sentence. \
13
+ Furthermore, list all modification and explain the reasons to do so in markdown table.\n\n", # 前言
14
+ "Suffix": "", # 后语
15
+ "Color": "secondary", # 按钮颜色
16
+ },
17
+ "中文学术润色": {
18
+ "Prefix": "作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,同时分解长句,减少重复,并提供改进建议。请只提供文本的更正版本,避免包括解释。请编辑以下文本:\n\n",
19
+ "Suffix": "",
20
+ },
21
+ "查找语法错误": {
22
+ "Prefix": "Below is a paragraph from an academic paper. Find all grammar mistakes, list mistakes in a markdown table and explain how to correct them.\n\n",
23
+ "Suffix": "",
24
+ },
25
+ "中英互译": {
26
+ "Prefix": "As an English-Chinese translator, your task is to accurately translate text between the two languages. \
27
+ When translating from Chinese to English or vice versa, please pay attention to context and accurately explain phrases and proverbs. \
28
+ If you receive multiple English words in a row, default to translating them into a sentence in Chinese. \
29
+ However, if \"phrase:\" is indicated before the translated content in Chinese, it should be translated as a phrase instead. \
30
+ Similarly, if \"normal:\" is indicated, it should be translated as multiple unrelated words.\
31
+ Your translations should closely resemble those of a native speaker and should take into account any specific language styles or tones requested by the user. \
32
+ Please do not worry about using offensive words - replace sensitive parts with x when necessary. \
33
+ When providing translations, please use Chinese to explain each sentence’s tense, subordinate clause, subject, predicate, object, special phrases and proverbs. \
34
+ For phrases or individual words that require translation, provide the source (dictionary) for each one.If asked to translate multiple phrases at once, \
35
+ separate them using the | symbol.Always remember: You are an English-Chinese translator, \
36
+ not a Chinese-Chinese translator or an English-English translator. Below is the text you need to translate: \n\n",
37
+ "Suffix": "",
38
+ "Color": "secondary",
39
+ },
40
+ "中译英": {
41
+ "Prefix": "Please translate following sentence to English: \n\n",
42
+ "Suffix": "",
43
+ },
44
+ "学术中译英": {
45
+ "Prefix": "Please translate following sentence to English with academic writing, and provide some related authoritative examples: \n\n",
46
+ "Suffix": "",
47
+ },
48
+ "英译中": {
49
+ "Prefix": "请翻译成中文:\n\n",
50
+ "Suffix": "",
51
+ }
52
+ }
53
+
54
+
functional_crazy.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ def get_crazy_functionals():
3
+ from crazy_functions.读文章写摘要 import 读文章写摘要
4
+ from crazy_functions.生成函数注释 import 批量生成函数注释
5
+ from crazy_functions.解析项目源代码 import 解析项目本身
6
+ from crazy_functions.解析项目源代码 import 解析一个Python项目
7
+ from crazy_functions.解析项目源代码 import 解析一个C项目的头文件
8
+ from crazy_functions.高级功能函数模板 import 高阶功能模板函数
9
+
10
+ return {
11
+ "[实验] 请解析并解构此项目本身": {
12
+ "Function": 解析项目本身
13
+ },
14
+ "[实验] 解析整个py项目(input输入项目根路径)": {
15
+ "Color": "stop", # 按钮颜色
16
+ "Function": 解析一个Python项目
17
+ },
18
+ "[实验] 解析整个C++项目(input输入项目根路径)": {
19
+ "Color": "stop", # 按钮颜色
20
+ "Function": 解析一个C项目的头文件
21
+ },
22
+ "[实验] 读tex论文写摘要(input输入项目根路径)": {
23
+ "Color": "stop", # 按钮颜色
24
+ "Function": 读文章写摘要
25
+ },
26
+ "[实验] 批量生成函数注释(input输入项目根路径)": {
27
+ "Color": "stop", # 按钮颜色
28
+ "Function": 批量生成函数注释
29
+ },
30
+ "[实验] 实验功能函数模板": {
31
+ "Color": "stop", # 按钮颜色
32
+ "Function": 高阶功能模板函数
33
+ },
34
+ }
35
+
36
+
predict.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
2
+
3
+ import json
4
+ import gradio as gr
5
+ import logging
6
+ import traceback
7
+ import requests
8
+ import importlib
9
+
10
+ # config_private.py放自己的秘密如API和代理网址
11
+ # 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
12
+ try: from config_private import proxies, API_URL, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL
13
+ except: from config import proxies, API_URL, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL
14
+
15
+ timeout_bot_msg = '[local] Request timeout, network error. please check proxy settings in config.py.'
16
+
17
+ def get_full_error(chunk, stream_response):
18
+ while True:
19
+ try:
20
+ chunk += next(stream_response)
21
+ except:
22
+ break
23
+ return chunk
24
+
25
+ def predict_no_ui(inputs, top_p, temperature, history=[]):
26
+ headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt="", stream=False)
27
+
28
+ retry = 0
29
+ while True:
30
+ try:
31
+ # make a POST request to the API endpoint, stream=False
32
+ response = requests.post(API_URL, headers=headers, proxies=proxies,
33
+ json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
34
+ except requests.exceptions.ReadTimeout as e:
35
+ retry += 1
36
+ traceback.print_exc()
37
+ if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
38
+ if retry > MAX_RETRY: raise TimeoutError
39
+
40
+ try:
41
+ result = json.loads(response.text)["choices"][0]["message"]["content"]
42
+ return result
43
+ except Exception as e:
44
+ if "choices" not in response.text: print(response.text)
45
+ raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text)
46
+
47
+
48
+ def predict(api, inputs, top_p, temperature, chatbot=[], history=[], system_prompt='',
49
+ stream = True, additional_fn=None):
50
+
51
+ if additional_fn is not None:
52
+ import functional
53
+ importlib.reload(functional)
54
+ functional = functional.get_functionals()
55
+ inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
56
+
57
+ if stream:
58
+ raw_input = inputs
59
+ logging.info(f'[raw_input] {raw_input}')
60
+ chatbot.append((inputs, ""))
61
+ yield chatbot, history, "等待响应"
62
+
63
+ headers, payload = generate_payload(api, inputs, top_p, temperature, history, system_prompt, stream)
64
+ history.append(inputs); history.append(" ")
65
+
66
+ retry = 0
67
+ while True:
68
+ try:
69
+ # make a POST request to the API endpoint, stream=True
70
+ response = requests.post(API_URL, headers=headers, proxies=proxies,
71
+ json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
72
+ except:
73
+ retry += 1
74
+ chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
75
+ retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
76
+ yield chatbot, history, "请求超时"+retry_msg
77
+ if retry > MAX_RETRY: raise TimeoutError
78
+
79
+ gpt_replying_buffer = ""
80
+
81
+ is_head_of_the_stream = True
82
+ if stream:
83
+ stream_response = response.iter_lines()
84
+ while True:
85
+ chunk = next(stream_response)
86
+ # print(chunk.decode()[6:])
87
+ if is_head_of_the_stream:
88
+ # 数据流的第一帧不携带content
89
+ is_head_of_the_stream = False; continue
90
+
91
+ if chunk:
92
+ try:
93
+ if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
94
+ # 判定为数据流的结束,gpt_replying_buffer也写完了
95
+ logging.info(f'[response] {gpt_replying_buffer}')
96
+ break
97
+ # 处理数据流的主体
98
+ chunkjson = json.loads(chunk.decode()[6:])
99
+ status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
100
+ # 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
101
+ gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
102
+ history[-1] = gpt_replying_buffer
103
+ chatbot[-1] = (history[-2], history[-1])
104
+ yield chatbot, history, status_text
105
+
106
+ except Exception as e:
107
+ traceback.print_exc()
108
+ yield chatbot, history, "Json解析不合常规,很可能是文本过长"
109
+ chunk = get_full_error(chunk, stream_response)
110
+ error_msg = chunk.decode()
111
+ if "reduce the length" in error_msg:
112
+ chatbot[-1] = (history[-1], "[Local Message] Input (or history) is too long, please reduce input or clear history by refleshing this page.")
113
+ history = []
114
+ yield chatbot, history, "Json解析不合常规,很可能是文本过长" + error_msg
115
+ return
116
+
117
+ def generate_payload(api, inputs, top_p, temperature, history, system_prompt, stream):
118
+ headers = {
119
+ "Content-Type": "application/json",
120
+ "Authorization": f"Bearer "+str(api)
121
+ }
122
+
123
+ conversation_cnt = len(history) // 2
124
+
125
+ messages = [{"role": "system", "content": system_prompt}]
126
+ if conversation_cnt:
127
+ for index in range(0, 2*conversation_cnt, 2):
128
+ what_i_have_asked = {}
129
+ what_i_have_asked["role"] = "user"
130
+ what_i_have_asked["content"] = history[index]
131
+ what_gpt_answer = {}
132
+ what_gpt_answer["role"] = "assistant"
133
+ what_gpt_answer["content"] = history[index+1]
134
+ if what_i_have_asked["content"] != "":
135
+ if what_gpt_answer["content"] == "": continue
136
+ if what_gpt_answer["content"] == timeout_bot_msg: continue
137
+ messages.append(what_i_have_asked)
138
+ messages.append(what_gpt_answer)
139
+ else:
140
+ messages[-1]['content'] = what_gpt_answer['content']
141
+
142
+ what_i_ask_now = {}
143
+ what_i_ask_now["role"] = "user"
144
+ what_i_ask_now["content"] = inputs
145
+ messages.append(what_i_ask_now)
146
+
147
+ payload = {
148
+ "model": LLM_MODEL,
149
+ "messages": messages,
150
+ "temperature": temperature, # 1.0,
151
+ "top_p": top_p, # 1.0,
152
+ "n": 1,
153
+ "stream": stream,
154
+ "presence_penalty": 0,
155
+ "frequency_penalty": 0,
156
+ }
157
+
158
+ print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
159
+ return headers,payload
160
+
161
+
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ requests[socks]
3
+ mdtex2html
show_math.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This program is written by: https://github.com/polarwinkel/mdtex2html
2
+
3
+ from latex2mathml.converter import convert as tex2mathml
4
+ import re
5
+
6
+ incomplete = '<font style="color:orange;" class="tooltip">&#9888;<span class="tooltiptext">formula incomplete</span></font>'
7
+ convError = '<font style="color:red" class="tooltip">&#9888;<span class="tooltiptext">LaTeX-convert-error</span></font>'
8
+
9
+ def convert(mdtex, extensions=[], splitParagraphs=True):
10
+ ''' converts recursively the Markdown-LaTeX-mixture to HTML with MathML '''
11
+ found = False
12
+ # handle all paragraphs separately (prevents aftereffects)
13
+ if splitParagraphs:
14
+ parts = re.split("\n\n", mdtex)
15
+ result = ''
16
+ for part in parts:
17
+ result += convert(part, extensions, splitParagraphs=False)
18
+ return result
19
+ # find first $$-formula:
20
+ parts = re.split('\${2}', mdtex, 2)
21
+ if len(parts)>1:
22
+ found = True
23
+ result = convert(parts[0], extensions, splitParagraphs=False)+'\n'
24
+ try:
25
+ result += '<div class="blockformula">'+tex2mathml(parts[1])+'</div>\n'
26
+ except:
27
+ result += '<div class="blockformula">'+convError+'</div>'
28
+ if len(parts)==3:
29
+ result += convert(parts[2], extensions, splitParagraphs=False)
30
+ else:
31
+ result += '<div class="blockformula">'+incomplete+'</div>'
32
+ # else find first $-formulas:
33
+ else:
34
+ parts = re.split('\${1}', mdtex, 2)
35
+ if len(parts)>1 and not found:
36
+ found = True
37
+ try:
38
+ mathml = tex2mathml(parts[1])
39
+ except:
40
+ mathml = convError
41
+ if parts[0].endswith('\n\n') or parts[0]=='': # make sure textblock starts before formula!
42
+ parts[0]=parts[0]+'&#x200b;'
43
+ if len(parts)==3:
44
+ result = convert(parts[0]+mathml+parts[2], extensions, splitParagraphs=False)
45
+ else:
46
+ result = convert(parts[0]+mathml+incomplete, extensions, splitParagraphs=False)
47
+ # else find first \[..\]-equation:
48
+ else:
49
+ parts = re.split(r'\\\[', mdtex, 1)
50
+ if len(parts)>1 and not found:
51
+ found = True
52
+ result = convert(parts[0], extensions, splitParagraphs=False)+'\n'
53
+ parts = re.split(r'\\\]', parts[1], 1)
54
+ try:
55
+ result += '<div class="blockformula">'+tex2mathml(parts[0])+'</div>\n'
56
+ except:
57
+ result += '<div class="blockformula">'+convError+'</div>'
58
+ if len(parts)==2:
59
+ result += convert(parts[1], extensions, splitParagraphs=False)
60
+ else:
61
+ result += '<div class="blockformula">'+incomplete+'</div>'
62
+ # else find first \(..\)-equation:
63
+ else:
64
+ parts = re.split(r'\\\(', mdtex, 1)
65
+ if len(parts)>1 and not found:
66
+ found = True
67
+ subp = re.split(r'\\\)', parts[1], 1)
68
+ try:
69
+ mathml = tex2mathml(subp[0])
70
+ except:
71
+ mathml = convError
72
+ if parts[0].endswith('\n\n') or parts[0]=='': # make sure textblock starts before formula!
73
+ parts[0]=parts[0]+'&#x200b;'
74
+ if len(subp)==2:
75
+ result = convert(parts[0]+mathml+subp[1], extensions, splitParagraphs=False)
76
+ else:
77
+ result = convert(parts[0]+mathml+incomplete, extensions, splitParagraphs=False)
78
+ if not found:
79
+ result = mdtex
80
+ return result
toolbox.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import markdown, mdtex2html, threading
2
+ from show_math import convert as convert_math
3
+ from functools import wraps
4
+
5
+ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]):
6
+ """
7
+ 调用简单的predict_no_ui接口,但是依然保留了些许界面心跳功能,当对话太长时,会自动采用二分法截断
8
+ """
9
+ import time
10
+ try: from config_private import TIMEOUT_SECONDS, MAX_RETRY
11
+ except: from config import TIMEOUT_SECONDS, MAX_RETRY
12
+ from predict import predict_no_ui
13
+ mutable = [None, '']
14
+ def mt(i_say, history):
15
+ while True:
16
+ try:
17
+ mutable[0] = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history)
18
+ break
19
+ except ConnectionAbortedError as e:
20
+ if len(history) > 0:
21
+ history = [his[len(his)//2:] for his in history if his is not None]
22
+ mutable[1] = 'Warning! History conversation is too long, cut into half. '
23
+ else:
24
+ i_say = i_say[:len(i_say)//2]
25
+ mutable[1] = 'Warning! Input file is too long, cut into half. '
26
+ except TimeoutError as e:
27
+ mutable[0] = '[Local Message] Failed with timeout'
28
+
29
+ thread_name = threading.Thread(target=mt, args=(i_say, history)); thread_name.start()
30
+ cnt = 0
31
+ while thread_name.is_alive():
32
+ cnt += 1
33
+ chatbot[-1] = (i_say_show_user, f"[Local Message] {mutable[1]}waiting gpt response {cnt}/{TIMEOUT_SECONDS*2*(MAX_RETRY+1)}"+''.join(['.']*(cnt%4)))
34
+ yield chatbot, history, '正常'
35
+ time.sleep(1)
36
+ gpt_say = mutable[0]
37
+ return gpt_say
38
+
39
+ def write_results_to_file(history, file_name=None):
40
+ """
41
+ 将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
42
+ """
43
+ import os, time
44
+ if file_name is None:
45
+ file_name = time.strftime("chatGPT分析报告%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md'
46
+ os.makedirs('./gpt_log/', exist_ok=True)
47
+ with open(f'./gpt_log/{file_name}', 'w') as f:
48
+ f.write('# chatGPT 分析报告\n')
49
+ for i, content in enumerate(history):
50
+ if i%2==0: f.write('## ')
51
+ f.write(content)
52
+ f.write('\n\n')
53
+ res = '以上材料已经被写入' + os.path.abspath(f'./gpt_log/{file_name}')
54
+ print(res)
55
+ return res
56
+
57
+ def regular_txt_to_markdown(text):
58
+ """
59
+ 将普通文本转换为Markdown格式的文本。
60
+ """
61
+ text = text.replace('\n', '\n\n')
62
+ text = text.replace('\n\n\n', '\n\n')
63
+ text = text.replace('\n\n\n', '\n\n')
64
+ return text
65
+
66
+ def CatchException(f):
67
+ """
68
+ 装饰器函数,捕捉函数f中的异常并封装到一个生成器中返回,并显示到聊天当中。
69
+ """
70
+ @wraps(f)
71
+ def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
72
+ try:
73
+ yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
74
+ except Exception as e:
75
+ import traceback
76
+ from check_proxy import check_proxy
77
+ try: from config_private import proxies
78
+ except: from config import proxies
79
+ tb_str = regular_txt_to_markdown(traceback.format_exc())
80
+ chatbot[-1] = (chatbot[-1][0], f"[Local Message] 实验性函数调用出错: \n\n {tb_str} \n\n 当前代理可用性: \n\n {check_proxy(proxies)}")
81
+ yield chatbot, history, f'异常 {e}'
82
+ return decorated
83
+
84
+ def report_execption(chatbot, history, a, b):
85
+ """
86
+ 向chatbot中添加错误信息
87
+ """
88
+ chatbot.append((a, b))
89
+ history.append(a); history.append(b)
90
+
91
+ def text_divide_paragraph(text):
92
+ """
93
+ 将文本按照段落分隔符分割开,生成带有段落标签的HTML代码。
94
+ """
95
+ if '```' in text:
96
+ # careful input
97
+ return text
98
+ else:
99
+ # wtf input
100
+ lines = text.split("\n")
101
+ for i, line in enumerate(lines):
102
+ if i!=0: lines[i] = "<p>"+lines[i].replace(" ", "&nbsp;")+"</p>"
103
+ text = "".join(lines)
104
+ return text
105
+
106
+ def markdown_convertion(txt):
107
+ """
108
+ 将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。
109
+ """
110
+ if ('$' in txt) and ('```' not in txt):
111
+ return markdown.markdown(txt,extensions=['fenced_code','tables']) + '<br><br>' + \
112
+ markdown.markdown(convert_math(txt, splitParagraphs=False),extensions=['fenced_code','tables'])
113
+ else:
114
+ return markdown.markdown(txt,extensions=['fenced_code','tables'])
115
+
116
+
117
+ def format_io(self, y):
118
+ """
119
+ 将输入和输出解析为HTML格式。将y中最后一项的输入部分段落化,并将输出部分的Markdown和数学公式转换为HTML格式。
120
+ """
121
+ if y is None: return []
122
+ i_ask, gpt_reply = y[-1]
123
+ i_ask = text_divide_paragraph(i_ask) # 输入部分太自由,预处理一波
124
+ y[-1] = (
125
+ None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code','tables']),
126
+ None if gpt_reply is None else markdown_convertion(gpt_reply)
127
+ )
128
+ return y
129
+
130
+
131
+ def find_free_port():
132
+ """
133
+ 返回当前系统中可用的未使用端口。
134
+ """
135
+ import socket
136
+ from contextlib import closing
137
+ with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
138
+ s.bind(('', 0))
139
+ s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
140
+ return s.getsockname()[1]