File size: 4,159 Bytes
624088c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
932a7fd
 
 
 
 
 
 
 
624088c
 
4f8f050
 
 
 
 
 
 
 
624088c
 
 
241036e
 
624088c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241036e
624088c
 
 
 
 
241036e
 
 
 
 
 
 
 
 
2f7798c
faf4ba4
 
 
 
 
 
 
3ca0269
 
 
 
 
 
a2c0551
3ca0269
11d758a
3ca0269
 
24b3b53
e52146b
 
24b3b53
11d758a
 
 
 
 
 
b3e635b
 
 
 
 
24b3b53
 
 
 
 
 
 
b3e635b
24b3b53
 
 
 
 
 
 
 
 
 
 
 
 
 
35f8585
 
 
 
 
 
5dd2af5
 
 
 
 
 
11d758a
a2c0551
11d758a
 
4f8f050
0ed5b20
11d758a
 
 
faf4ba4
11d758a
 
 
 
 
 
a2c0551
 
 
b48537f
1c1e6e9
a296341
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
export type ProjectionMode = 'cartesian' | 'spherical'

export type CacheMode = "use" | "renew" | "ignore"

export interface RenderRequest {
  prompt: string

  // whether to use video segmentation
  // disabled (default)
  // firstframe: we only analyze the first frame
  // allframes: we analyze all the frames
  segmentation: 'disabled' | 'firstframe' | 'allframes'

  // segmentation will only be executed if we have a non-empty list of actionnables
  // actionnables are names of things like "chest", "key", "tree", "chair" etc
  actionnables: string[]

  // note: this is the number of frames for Zeroscope,
  // which is currently configured to only output 3 seconds, so:
  // nbFrames=8 -> 1 sec
  // nbFrames=16 -> 2 sec
  // nbFrames=24 -> 3 sec
  nbFrames: number // min: 1, max: 24

  nbSteps: number // min: 1, max: 50

  seed: number

  width: number // fixed at 1024 for now
  height: number // fixed at 512 for now

  // upscaling factor
  // 0: no upscaling
  // 1: no upscaling
  // 2: 2x larger
  // 3: 3x larger
  // 4x: 4x larger, up to 4096x4096 (warning: a PNG of this size can be 50 Mb!)
  upscalingFactor: number

  projection: ProjectionMode

  /**
   * Use turbo mode
   * 
   * At the time of writing this will use SSD-1B + LCM
   * https://huggingface.co/spaces/jbilcke-hf/fast-image-server
   */
  turbo: boolean

  cache: CacheMode

  wait: boolean // wait until the job is completed

  analyze: boolean // analyze the image to generate a caption (optional)
}

export interface ImageSegment {
  id: number
  box: number[]
  color: number[]
  label: string
  score: number 
}

export type RenderedSceneStatus =
  | "pending"
  | "completed"
  | "error"

export interface RenderedScene {
  renderId: string
  status: RenderedSceneStatus
  assetUrl: string 
  alt: string
  error: string
  maskUrl: string
  segments: ImageSegment[]
}

export interface ImageAnalysisRequest {
  image: string // in base64
  prompt: string
}

export interface ImageAnalysisResponse {
  result: string
  error?: string
}

export type GeneratedPanel = {
  panel: number
  instructions: string
  caption: string
}

export type GeneratedPanels = GeneratedPanel[]

export type LLMEngine =
  | "INFERENCE_API"
  | "INFERENCE_ENDPOINT"
  | "OPENAI"
  | "REPLICATE"
  | "GROQ"

  export type RenderingEngine =
  | "VIDEOCHAIN"
  | "OPENAI"
  | "REPLICATE"
  | "INFERENCE_API"
  | "INFERENCE_ENDPOINT"

  export type RenderingModelVendor =
  | "SERVER"
  | "OPENAI"
  | "REPLICATE"
  | "HUGGINGFACE"

export type PostVisibility =
  | "featured" // featured by admins
  | "trending" // top trending / received more than 10 upvotes
  | "normal" // default visibility

export type Post = {
  postId: string
  appId: string
  prompt: string
  previewUrl: string
  assetUrl: string
  createdAt: string
  visibility: PostVisibility
  upvotes: number
  downvotes: number
}

export type CreatePostResponse = {
  success?: boolean
  error?: string
  post: Post
}

export type GetAppPostsResponse = {
  success?: boolean
  error?: string
  posts: Post[]
}

export type GetAppPostResponse = {
  success?: boolean
  error?: string
  post: Post
}

export type LayoutProps = {
  page: number
  nbPanels: number
}

// TODO: rename the *Model fields to better indicate if this is a LLM or RENDER mdoel
export type Settings = {
  renderingModelVendor: RenderingModelVendor
  renderingUseTurbo: boolean
  huggingFaceOAuth: string
  huggingfaceApiKey: string
  huggingfaceInferenceApiModel: string
  huggingfaceInferenceApiModelTrigger: string
  huggingfaceInferenceApiFileType: string
  replicateApiKey: string
  replicateApiModel: string
  replicateApiModelVersion: string
  replicateApiModelTrigger: string
  openaiApiKey: string
  openaiApiModel: string
  openaiApiLanguageModel: string
  groqApiKey: string
  groqApiLanguageModel: string
  hasGeneratedAtLeastOnce: boolean
  userDefinedMaxNumberOfPages: number
}

export type DynamicConfig = {
  maxNbPages: number
  nbPanelsPerPage: number
  nbTotalPanelsToGenerate: number
  oauthClientId: string
  oauthRedirectUrl: string
  oauthScopes: string
  enableHuggingFaceOAuth: boolean
  enableHuggingFaceOAuthWall: boolean
}