ai-comic-factory / src /app /queries /predictNextPanels.ts
jbilcke-hf's picture
jbilcke-hf HF staff
added suggestion from user + work on the progressive loader
faf4ba4
raw
history blame
3.69 kB
import { predict } from "./predict"
import { Preset } from "../engine/presets"
import { GeneratedPanel } from "@/types"
import { cleanJson } from "@/lib/cleanJson"
import { createZephyrPrompt } from "@/lib/createZephyrPrompt"
import { dirtyGeneratedPanelCleaner } from "@/lib/dirtyGeneratedPanelCleaner"
import { dirtyGeneratedPanelsParser } from "@/lib/dirtyGeneratedPanelsParser"
export const predictNextPanels = async ({
preset,
prompt = "",
nbPanelsToGenerate = 2,
existingPanels = [],
}: {
preset: Preset;
prompt: string;
nbPanelsToGenerate: number;
existingPanels: GeneratedPanel[];
}): Promise<GeneratedPanel[]> => {
// throw new Error("Planned maintenance")
// In case you need to quickly debug the RENDERING engine you can uncomment this:
// return mockGeneratedPanels
const existingPanelsTemplate = existingPanels.length
? ` To help you, here are the previous panels and their captions (note: if you see an anomaly here eg. no caption or the same description repeated multiple times, do not hesitate to fix the story): ${JSON.stringify(existingPanels, null, 2)}`
: ''
const query = createZephyrPrompt([
{
role: "system",
content: [
`You are a writer specialized in ${preset.llmPrompt}`,
`Please write detailed drawing instructions and short (2-3 sentences long) speech captions for the next ${nbPanelsToGenerate} panels of a new story, but keep it open-ended (it will be continued and expanded later). Please make sure each of those ${nbPanelsToGenerate} panels include info about character gender, age, origin, clothes, colors, location, lights, etc.`,
`Give your response as a VALID JSON array like this: \`Array<{ panel: number; instructions: string; caption: string; }>\`.`,
// `Give your response as Markdown bullet points.`,
`Be brief in your ${nbPanelsToGenerate} instructions and narrative captions, don't add your own comments. The captions must be captivating, smart, entertaining. Be straight to the point, and never reply things like "Sure, I can.." etc. Reply using valid JSON.`
].filter(item => item).join("\n")
},
{
role: "user",
content: `The story is about: ${prompt}.${existingPanelsTemplate}`,
}
]) + "\n```[{"
let result = ""
try {
// console.log(`calling predict(${query}, ${nbTotalPanels})`)
result = `${await predict(query, nbPanelsToGenerate) || ""}`.trim()
if (!result.length) {
throw new Error("empty result!")
}
} catch (err) {
// console.log(`prediction of the story failed, trying again..`)
try {
result = `${await predict(query+".", nbPanelsToGenerate) || ""}`.trim()
if (!result.length) {
throw new Error("empty result!")
}
} catch (err) {
console.error(`prediction of the story failed again πŸ’©`)
throw new Error(`failed to generate the story ${err}`)
}
}
// console.log("Raw response from LLM:", result)
const tmp = cleanJson(result)
let generatedPanels: GeneratedPanel[] = []
try {
generatedPanels = dirtyGeneratedPanelsParser(tmp)
} catch (err) {
// console.log(`failed to read LLM response: ${err}`)
// console.log(`original response was:`, result)
// in case of failure here, it might be because the LLM hallucinated a completely different response,
// such as markdown. There is no real solution.. but we can try a fallback:
generatedPanels = (
tmp.split("*")
.map(item => item.trim())
.map((cap, i) => ({
panel: i,
caption: cap,
instructions: cap,
}))
)
}
return generatedPanels.map(res => dirtyGeneratedPanelCleaner(res))
}