File size: 15,018 Bytes
26555ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import os
import math
import torch
import logging
import subprocess
import numpy as np
import torch.distributed as dist
# from torch._six import inf
from torch import inf
from PIL import Image
from typing import Union, Iterable
from collections import OrderedDict
_tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]]
#################################################################################
# Training Helper Functions #
#################################################################################
#################################################################################
# Training Clip Gradients #
#################################################################################
def get_grad_norm(
parameters: _tensor_or_tensors, norm_type: float = 2.0) -> torch.Tensor:
r"""
Copy from torch.nn.utils.clip_grad_norm_
Clips gradient norm of an iterable of parameters.
The norm is computed over all gradients together, as if they were
concatenated into a single vector. Gradients are modified in-place.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
error_if_nonfinite (bool): if True, an error is thrown if the total
norm of the gradients from :attr:`parameters` is ``nan``,
``inf``, or ``-inf``. Default: False (will switch to True in the future)
Returns:
Total norm of the parameter gradients (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
grads = [p.grad for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(grads) == 0:
return torch.tensor(0.)
device = grads[0].device
if norm_type == inf:
norms = [g.detach().abs().max().to(device) for g in grads]
total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
else:
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
return total_norm
def clip_grad_norm_(
parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0,
error_if_nonfinite: bool = False, clip_grad = True) -> torch.Tensor:
r"""
Copy from torch.nn.utils.clip_grad_norm_
Clips gradient norm of an iterable of parameters.
The norm is computed over all gradients together, as if they were
concatenated into a single vector. Gradients are modified in-place.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
error_if_nonfinite (bool): if True, an error is thrown if the total
norm of the gradients from :attr:`parameters` is ``nan``,
``inf``, or ``-inf``. Default: False (will switch to True in the future)
Returns:
Total norm of the parameter gradients (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
grads = [p.grad for p in parameters if p.grad is not None]
max_norm = float(max_norm)
norm_type = float(norm_type)
if len(grads) == 0:
return torch.tensor(0.)
device = grads[0].device
if norm_type == inf:
norms = [g.detach().abs().max().to(device) for g in grads]
total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
else:
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
# print(total_norm)
if clip_grad:
if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()):
raise RuntimeError(
f'The total norm of order {norm_type} for gradients from '
'`parameters` is non-finite, so it cannot be clipped. To disable '
'this error and scale the gradients by the non-finite norm anyway, '
'set `error_if_nonfinite=False`')
clip_coef = max_norm / (total_norm + 1e-6)
# Note: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so
# avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization
# when the gradients do not reside in CPU memory.
clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
for g in grads:
g.detach().mul_(clip_coef_clamped.to(g.device))
# gradient_cliped = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
# print(gradient_cliped)
return total_norm
#################################################################################
# Training Logger #
#################################################################################
def create_logger(logging_dir):
"""
Create a logger that writes to a log file and stdout.
"""
if dist.get_rank() == 0: # real logger
logging.basicConfig(
level=logging.INFO,
# format='[\033[34m%(asctime)s\033[0m] %(message)s',
format='[%(asctime)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
def create_accelerate_logger(logging_dir, is_main_process=False):
"""
Create a logger that writes to a log file and stdout.
"""
if is_main_process: # real logger
logging.basicConfig(
level=logging.INFO,
# format='[\033[34m%(asctime)s\033[0m] %(message)s',
format='[%(asctime)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
def create_tensorboard(tensorboard_dir):
"""
Create a tensorboard that saves losses.
"""
if dist.get_rank() == 0: # real tensorboard
# tensorboard
writer = SummaryWriter(tensorboard_dir)
return writer
def write_tensorboard(writer, *args):
'''
write the loss information to a tensorboard file.
Only for pytorch DDP mode.
'''
if dist.get_rank() == 0: # real tensorboard
writer.add_scalar(args[0], args[1], args[2])
#################################################################################
# EMA Update/ DDP Training Utils #
#################################################################################
@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
"""
Step the EMA model towards the current model.
"""
ema_params = OrderedDict(ema_model.named_parameters())
model_params = OrderedDict(model.named_parameters())
for name, param in model_params.items():
# TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def cleanup():
"""
End DDP training.
"""
dist.destroy_process_group()
def setup_distributed(backend="nccl", port=None):
"""Initialize distributed training environment.
support both slurm and torch.distributed.launch
see torch.distributed.init_process_group() for more details
"""
num_gpus = torch.cuda.device_count()
print(f'Hahahahahaha')
if "SLURM_JOB_ID" in os.environ:
rank = int(os.environ["SLURM_PROCID"])
world_size = int(os.environ["SLURM_NTASKS"])
node_list = os.environ["SLURM_NODELIST"]
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
# specify master port
if port is not None:
os.environ["MASTER_PORT"] = str(port)
elif "MASTER_PORT" not in os.environ:
# os.environ["MASTER_PORT"] = "29566"
os.environ["MASTER_PORT"] = str(29566 + num_gpus)
if "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = addr
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["LOCAL_RANK"] = str(rank % num_gpus)
os.environ["RANK"] = str(rank)
else:
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
# torch.cuda.set_device(rank % num_gpus)
print(f'before dist.init_process_group')
dist.init_process_group(
backend=backend,
world_size=world_size,
rank=rank,
)
print(f'after dist.init_process_group')
#################################################################################
# Testing Utils #
#################################################################################
def save_video_grid(video, nrow=None):
b, t, h, w, c = video.shape
if nrow is None:
nrow = math.ceil(math.sqrt(b))
ncol = math.ceil(b / nrow)
padding = 1
video_grid = torch.zeros((t, (padding + h) * nrow + padding,
(padding + w) * ncol + padding, c), dtype=torch.uint8)
print(video_grid.shape)
for i in range(b):
r = i // ncol
c = i % ncol
start_r = (padding + h) * r
start_c = (padding + w) * c
video_grid[:, start_r:start_r + h, start_c:start_c + w] = video[i]
return video_grid
#################################################################################
# MMCV Utils #
#################################################################################
def collect_env():
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.utils import collect_env as collect_base_env
from mmcv.utils import get_git_hash
"""Collect the information of the running environments."""
env_info = collect_base_env()
env_info['MMClassification'] = get_git_hash()[:7]
for name, val in env_info.items():
print(f'{name}: {val}')
print(torch.cuda.get_arch_list())
print(torch.version.cuda)
#################################################################################
# Long video generation Utils #
#################################################################################
def mask_generation(mask_type, shape, dtype, device):
b, c, f, h, w = shape
if mask_type.startswith('random'):
num = float(mask_type.split('random')[-1])
mask_f = torch.ones(1, 1, f, 1, 1, dtype=dtype, device=device)
indices = torch.randperm(f, device=device)[:int(f*num)]
mask_f[0, 0, indices, :, :] = 0
mask = mask_f.expand(b, c, -1, h, w)
elif mask_type.startswith('first'):
num = int(mask_type.split('first')[-1])
mask_f = torch.cat([torch.zeros(1, 1, num, 1, 1, dtype=dtype, device=device),
torch.ones(1, 1, f-num, 1, 1, dtype=dtype, device=device)], dim=2)
mask = mask_f.expand(b, c, -1, h, w)
else:
raise ValueError(f"Invalid mask type: {mask_type}")
return mask
def mask_generation_before(mask_type, shape, dtype, device):
b, f, c, h, w = shape
if mask_type.startswith('random'):
num = float(mask_type.split('random')[-1])
mask_f = torch.ones(1, f, 1, 1, 1, dtype=dtype, device=device)
indices = torch.randperm(f, device=device)[:int(f*num)]
mask_f[0, indices, :, :, :] = 0
mask = mask_f.expand(b, -1, c, h, w)
elif mask_type.startswith('first'):
num = int(mask_type.split('first')[-1])
mask_f = torch.cat([torch.zeros(1, num, 1, 1, 1, dtype=dtype, device=device),
torch.ones(1, f-num, 1, 1, 1, dtype=dtype, device=device)], dim=1)
mask = mask_f.expand(b, -1, c, h, w)
elif mask_type.startswith('uniform'):
p = float(mask_type.split('uniform')[-1])
mask_f = torch.ones(1, f, 1, 1, 1, dtype=dtype, device=device)
mask_f[0, torch.rand(f, device=device) < p, :, :, :] = 0
print(f'mask_f: = {mask_f}')
mask = mask_f.expand(b, -1, c, h, w)
print(f'mask.shape: = {mask.shape}, mask: = {mask}')
elif mask_type.startswith('all'):
mask = torch.ones(b,f,c,h,w,dtype=dtype,device=device)
elif mask_type.startswith('onelast'):
num = int(mask_type.split('onelast')[-1])
mask_one = torch.zeros(1,1,1,1,1, dtype=dtype, device=device)
mask_mid = torch.ones(1,f-2*num,1,1,1,dtype=dtype, device=device)
mask_last = torch.zeros_like(mask_one)
mask = torch.cat([mask_one]*num + [mask_mid] + [mask_last]*num, dim=1)
# breakpoint()
mask = mask.expand(b, -1, c, h, w)
elif mask_type.startswith('interpolate'):
mask_f = []
for i in range(4):
mask_zero = torch.zeros(1,1,1,1,1, dtype=dtype, device=device)
mask_f.append(mask_zero)
mask_one = torch.ones(1,3,1,1,1, dtype=dtype, device=device)
mask_f.append(mask_one)
mask = torch.cat(mask_f, dim=1)
print(f'mask={mask}')
elif mask_type.startswith('tsr'):
mask_f = []
mask_zero = torch.zeros(1,1,1,1,1, dtype=dtype, device=device)
mask_one = torch.ones(1,3,1,1,1, dtype=dtype, device=device)
for i in range(15):
mask_f.append(mask_zero) # not masked
mask_f.append(mask_one) # masked
mask_f.append(mask_zero) # not masked
mask = torch.cat(mask_f, dim=1)
# print(f'before mask.shape = {mask.shape}, mask = {mask}') # [1, 61, 1, 1, 1]
mask = mask.expand(b, -1, c, h, w)
# print(f'after mask.shape = {mask.shape}, mask = {mask}') # [4, 61, 3, 256, 256]
else:
raise ValueError(f"Invalid mask type: {mask_type}")
return mask
|