|
import gradio as gr |
|
from text_to_video import model_t2v_fun,setup_seed |
|
from omegaconf import OmegaConf |
|
import torch |
|
import imageio |
|
import os |
|
import cv2 |
|
import pandas as pd |
|
import torchvision |
|
import random |
|
import base64 |
|
from models import get_models |
|
|
|
from pipelines.pipeline_videogen import VideoGenPipeline |
|
from download import find_model |
|
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler, EulerDiscreteScheduler |
|
from diffusers.models import AutoencoderKL |
|
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection |
|
|
|
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') |
|
|
|
config_path = "./base/configs/sample.yaml" |
|
args = OmegaConf.load("./base/configs/sample.yaml") |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
sd_path = args.pretrained_path |
|
unet = get_models(args, sd_path).to(device, dtype=torch.float16) |
|
state_dict = find_model("./pretrained_models/lavie_base.pt") |
|
unet.load_state_dict(state_dict) |
|
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device) |
|
tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer") |
|
text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) |
|
unet.eval() |
|
vae.eval() |
|
text_encoder_one.eval() |
|
|
|
|
|
def generate_video(secret_token, prompt): |
|
seed_inp = -1 |
|
ddim_steps = 50 |
|
cfg = 7.5 |
|
infer_type = "ddim" |
|
|
|
if secret_token != SECRET_TOKEN: |
|
raise gr.Error(f'Invalid secret token. Please fork the original space if you want to use it for yourself.') |
|
|
|
if seed_inp!=-1: |
|
setup_seed(seed_inp) |
|
else: |
|
seed_inp = random.choice(range(10000000)) |
|
setup_seed(seed_inp) |
|
if infer_type == 'ddim': |
|
scheduler = DDIMScheduler.from_pretrained(sd_path, |
|
subfolder="scheduler", |
|
beta_start=args.beta_start, |
|
beta_end=args.beta_end, |
|
beta_schedule=args.beta_schedule) |
|
elif infer_type == 'eulerdiscrete': |
|
scheduler = EulerDiscreteScheduler.from_pretrained(sd_path, |
|
subfolder="scheduler", |
|
beta_start=args.beta_start, |
|
beta_end=args.beta_end, |
|
beta_schedule=args.beta_schedule) |
|
elif infer_type == 'ddpm': |
|
scheduler = DDPMScheduler.from_pretrained(sd_path, |
|
subfolder="scheduler", |
|
beta_start=args.beta_start, |
|
beta_end=args.beta_end, |
|
beta_schedule=args.beta_schedule) |
|
model = VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet) |
|
model.to(device) |
|
if device == "cuda": |
|
model.enable_xformers_memory_efficient_attention() |
|
videos = model(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video |
|
if not os.path.exists(args.output_folder): |
|
os.mkdir(args.output_folder) |
|
|
|
video_path = args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4' |
|
|
|
torchvision.io.write_video(video_path, videos[0], fps=8) |
|
|
|
|
|
with open(video_path, "rb") as video_file: |
|
video_base64 = base64.b64encode(video_file.read()).decode('utf-8') |
|
|
|
|
|
video_data_uri = 'data:video/mp4;base64,' + video_base64 |
|
|
|
|
|
|
|
|
|
return video_data_uri |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.HTML(""" |
|
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;"> |
|
<div style="text-align: center; color: black;"> |
|
<p style="color: black;">This space is a REST API to programmatically generate MP4 videos.</p> |
|
<p style="color: black;">Interested in using it? Look no further than the <a href="https://huggingface.co/spaces/Vchitect/LaVie" target="_blank">original space</a>!</p> |
|
</div> |
|
</div>""") |
|
secret_token = gr.Textbox(label="Secret token") |
|
|
|
prompt = gr.Textbox(value="", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2) |
|
infer_type = gr.Dropdown(['ddpm','ddim','eulerdiscrete'], label='infer_type',value='ddim') |
|
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1) |
|
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647) |
|
cfg = gr.Number(label="guidance_scale",value=7.5) |
|
|
|
submit_btn = gr.Button("Generate video") |
|
base64_out = gr.Textbox(label="Base64 Video") |
|
|
|
submit_btn.click( |
|
fn=generate_video, |
|
inputs=[secret_token, prompt], |
|
outputs=base64_out, |
|
api_name='run', |
|
) |
|
|
|
demo.queue(max_size=12).launch() |
|
|
|
|
|
|