jbilcke-hf's picture
jbilcke-hf HF staff
Update base/app.py
ceeea40
import gradio as gr
from text_to_video import model_t2v_fun,setup_seed
from omegaconf import OmegaConf
import torch
import imageio
import os
import cv2
import pandas as pd
import torchvision
import random
import base64
from models import get_models
from pipelines.pipeline_videogen import VideoGenPipeline
from download import find_model
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler, EulerDiscreteScheduler
from diffusers.models import AutoencoderKL
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
config_path = "./base/configs/sample.yaml"
args = OmegaConf.load("./base/configs/sample.yaml")
device = "cuda" if torch.cuda.is_available() else "cpu"
sd_path = args.pretrained_path
unet = get_models(args, sd_path).to(device, dtype=torch.float16)
state_dict = find_model("./pretrained_models/lavie_base.pt")
unet.load_state_dict(state_dict)
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device)
tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) # huge
unet.eval()
vae.eval()
text_encoder_one.eval()
#def infer(secret_token, prompt, seed_inp, ddim_steps,cfg, infer_type):
def generate_video(secret_token, prompt):
seed_inp = -1
ddim_steps = 50
cfg = 7.5
infer_type = "ddim"
if secret_token != SECRET_TOKEN:
raise gr.Error(f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
if seed_inp!=-1:
setup_seed(seed_inp)
else:
seed_inp = random.choice(range(10000000))
setup_seed(seed_inp)
if infer_type == 'ddim':
scheduler = DDIMScheduler.from_pretrained(sd_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule)
elif infer_type == 'eulerdiscrete':
scheduler = EulerDiscreteScheduler.from_pretrained(sd_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule)
elif infer_type == 'ddpm':
scheduler = DDPMScheduler.from_pretrained(sd_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule)
model = VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet)
model.to(device)
if device == "cuda":
model.enable_xformers_memory_efficient_attention()
videos = model(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video
if not os.path.exists(args.output_folder):
os.mkdir(args.output_folder)
video_path = args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4'
torchvision.io.write_video(video_path, videos[0], fps=8)
# Read the content of the video file and encode it to base64
with open(video_path, "rb") as video_file:
video_base64 = base64.b64encode(video_file.read()).decode('utf-8')
# Prepend the appropriate data URI header with MIME type
video_data_uri = 'data:video/mp4;base64,' + video_base64
# Clean up the video file to avoid filling up storage
# os.remove(video_path)
return video_data_uri
with gr.Blocks() as demo:
with gr.Column():
gr.HTML("""
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
<div style="text-align: center; color: black;">
<p style="color: black;">This space is a REST API to programmatically generate MP4 videos.</p>
<p style="color: black;">Interested in using it? Look no further than the <a href="https://huggingface.co/spaces/Vchitect/LaVie" target="_blank">original space</a>!</p>
</div>
</div>""")
secret_token = gr.Textbox(label="Secret token")
prompt = gr.Textbox(value="", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2)
infer_type = gr.Dropdown(['ddpm','ddim','eulerdiscrete'], label='infer_type',value='ddim')
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1)
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647)
cfg = gr.Number(label="guidance_scale",value=7.5)
submit_btn = gr.Button("Generate video")
base64_out = gr.Textbox(label="Base64 Video")
submit_btn.click(
fn=generate_video,
inputs=[secret_token, prompt], # seed_inp, ddim_steps, cfg, infer_type],
outputs=base64_out,
api_name='run',
)
demo.queue(max_size=12).launch()