Spaces:
Running
on
A10G
Running
on
A10G
File size: 13,381 Bytes
5325fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Dataset of audio with a simple description.
"""
from dataclasses import dataclass, fields, replace
import json
from pathlib import Path
import random
import typing as tp
import numpy as np
import torch
from .info_audio_dataset import (
InfoAudioDataset,
get_keyword_or_keyword_list
)
from ..modules.conditioners import (
ConditioningAttributes,
SegmentWithAttributes,
WavCondition,
)
EPS = torch.finfo(torch.float32).eps
TARGET_LEVEL_LOWER = -35
TARGET_LEVEL_UPPER = -15
@dataclass
class SoundInfo(SegmentWithAttributes):
"""Segment info augmented with Sound metadata.
"""
description: tp.Optional[str] = None
self_wav: tp.Optional[torch.Tensor] = None
@property
def has_sound_meta(self) -> bool:
return self.description is not None
def to_condition_attributes(self) -> ConditioningAttributes:
out = ConditioningAttributes()
for _field in fields(self):
key, value = _field.name, getattr(self, _field.name)
if key == 'self_wav':
out.wav[key] = value
else:
out.text[key] = value
return out
@staticmethod
def attribute_getter(attribute):
if attribute == 'description':
preprocess_func = get_keyword_or_keyword_list
else:
preprocess_func = None
return preprocess_func
@classmethod
def from_dict(cls, dictionary: dict, fields_required: bool = False):
_dictionary: tp.Dict[str, tp.Any] = {}
# allow a subset of attributes to not be loaded from the dictionary
# these attributes may be populated later
post_init_attributes = ['self_wav']
for _field in fields(cls):
if _field.name in post_init_attributes:
continue
elif _field.name not in dictionary:
if fields_required:
raise KeyError(f"Unexpected missing key: {_field.name}")
else:
preprocess_func: tp.Optional[tp.Callable] = cls.attribute_getter(_field.name)
value = dictionary[_field.name]
if preprocess_func:
value = preprocess_func(value)
_dictionary[_field.name] = value
return cls(**_dictionary)
class SoundDataset(InfoAudioDataset):
"""Sound audio dataset: Audio dataset with environmental sound-specific metadata.
Args:
info_fields_required (bool): Whether all the mandatory metadata fields should be in the loaded metadata.
external_metadata_source (tp.Optional[str]): Folder containing JSON metadata for the corresponding dataset.
The metadata files contained in this folder are expected to match the stem of the audio file with
a json extension.
aug_p (float): Probability of performing audio mixing augmentation on the batch.
mix_p (float): Proportion of batch items that are mixed together when applying audio mixing augmentation.
mix_snr_low (int): Lowerbound for SNR value sampled for mixing augmentation.
mix_snr_high (int): Upperbound for SNR value sampled for mixing augmentation.
mix_min_overlap (float): Minimum overlap between audio files when performing mixing augmentation.
kwargs: Additional arguments for AudioDataset.
See `audiocraft.data.info_audio_dataset.InfoAudioDataset` for full initialization arguments.
"""
def __init__(
self,
*args,
info_fields_required: bool = True,
external_metadata_source: tp.Optional[str] = None,
aug_p: float = 0.,
mix_p: float = 0.,
mix_snr_low: int = -5,
mix_snr_high: int = 5,
mix_min_overlap: float = 0.5,
**kwargs
):
kwargs['return_info'] = True # We require the info for each song of the dataset.
super().__init__(*args, **kwargs)
self.info_fields_required = info_fields_required
self.external_metadata_source = external_metadata_source
self.aug_p = aug_p
self.mix_p = mix_p
if self.aug_p > 0:
assert self.mix_p > 0, "Expecting some mixing proportion mix_p if aug_p > 0"
assert self.channels == 1, "SoundDataset with audio mixing considers only monophonic audio"
self.mix_snr_low = mix_snr_low
self.mix_snr_high = mix_snr_high
self.mix_min_overlap = mix_min_overlap
def _get_info_path(self, path: tp.Union[str, Path]) -> Path:
"""Get path of JSON with metadata (description, etc.).
If there exists a JSON with the same name as 'path.name', then it will be used.
Else, such JSON will be searched for in an external json source folder if it exists.
"""
info_path = Path(path).with_suffix('.json')
if Path(info_path).exists():
return info_path
elif self.external_metadata_source and (Path(self.external_metadata_source) / info_path.name).exists():
return Path(self.external_metadata_source) / info_path.name
else:
raise Exception(f"Unable to find a metadata JSON for path: {path}")
def __getitem__(self, index):
wav, info = super().__getitem__(index)
info_data = info.to_dict()
info_path = self._get_info_path(info.meta.path)
if Path(info_path).exists():
with open(info_path, 'r') as json_file:
sound_data = json.load(json_file)
sound_data.update(info_data)
sound_info = SoundInfo.from_dict(sound_data, fields_required=self.info_fields_required)
# if there are multiple descriptions, sample one randomly
if isinstance(sound_info.description, list):
sound_info.description = random.choice(sound_info.description)
else:
sound_info = SoundInfo.from_dict(info_data, fields_required=False)
sound_info.self_wav = WavCondition(
wav=wav[None], length=torch.tensor([info.n_frames]),
sample_rate=[sound_info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
return wav, sound_info
def collater(self, samples):
# when training, audio mixing is performed in the collate function
wav, sound_info = super().collater(samples) # SoundDataset always returns infos
if self.aug_p > 0:
wav, sound_info = mix_samples(wav, sound_info, self.aug_p, self.mix_p,
snr_low=self.mix_snr_low, snr_high=self.mix_snr_high,
min_overlap=self.mix_min_overlap)
return wav, sound_info
def rms_f(x: torch.Tensor) -> torch.Tensor:
return (x ** 2).mean(1).pow(0.5)
def normalize(audio: torch.Tensor, target_level: int = -25) -> torch.Tensor:
"""Normalize the signal to the target level."""
rms = rms_f(audio)
scalar = 10 ** (target_level / 20) / (rms + EPS)
audio = audio * scalar.unsqueeze(1)
return audio
def is_clipped(audio: torch.Tensor, clipping_threshold: float = 0.99) -> torch.Tensor:
return (abs(audio) > clipping_threshold).any(1)
def mix_pair(src: torch.Tensor, dst: torch.Tensor, min_overlap: float) -> torch.Tensor:
start = random.randint(0, int(src.shape[1] * (1 - min_overlap)))
remainder = src.shape[1] - start
if dst.shape[1] > remainder:
src[:, start:] = src[:, start:] + dst[:, :remainder]
else:
src[:, start:start+dst.shape[1]] = src[:, start:start+dst.shape[1]] + dst
return src
def snr_mixer(clean: torch.Tensor, noise: torch.Tensor, snr: int, min_overlap: float,
target_level: int = -25, clipping_threshold: float = 0.99) -> torch.Tensor:
"""Function to mix clean speech and noise at various SNR levels.
Args:
clean (torch.Tensor): Clean audio source to mix, of shape [B, T].
noise (torch.Tensor): Noise audio source to mix, of shape [B, T].
snr (int): SNR level when mixing.
min_overlap (float): Minimum overlap between the two mixed sources.
target_level (int): Gain level in dB.
clipping_threshold (float): Threshold for clipping the audio.
Returns:
torch.Tensor: The mixed audio, of shape [B, T].
"""
if clean.shape[1] > noise.shape[1]:
noise = torch.nn.functional.pad(noise, (0, clean.shape[1] - noise.shape[1]))
else:
noise = noise[:, :clean.shape[1]]
# normalizing to -25 dB FS
clean = clean / (clean.max(1)[0].abs().unsqueeze(1) + EPS)
clean = normalize(clean, target_level)
rmsclean = rms_f(clean)
noise = noise / (noise.max(1)[0].abs().unsqueeze(1) + EPS)
noise = normalize(noise, target_level)
rmsnoise = rms_f(noise)
# set the noise level for a given SNR
noisescalar = (rmsclean / (10 ** (snr / 20)) / (rmsnoise + EPS)).unsqueeze(1)
noisenewlevel = noise * noisescalar
# mix noise and clean speech
noisyspeech = mix_pair(clean, noisenewlevel, min_overlap)
# randomly select RMS value between -15 dBFS and -35 dBFS and normalize noisyspeech with that value
# there is a chance of clipping that might happen with very less probability, which is not a major issue.
noisy_rms_level = np.random.randint(TARGET_LEVEL_LOWER, TARGET_LEVEL_UPPER)
rmsnoisy = rms_f(noisyspeech)
scalarnoisy = (10 ** (noisy_rms_level / 20) / (rmsnoisy + EPS)).unsqueeze(1)
noisyspeech = noisyspeech * scalarnoisy
clean = clean * scalarnoisy
noisenewlevel = noisenewlevel * scalarnoisy
# final check to see if there are any amplitudes exceeding +/- 1. If so, normalize all the signals accordingly
clipped = is_clipped(noisyspeech)
if clipped.any():
noisyspeech_maxamplevel = noisyspeech[clipped].max(1)[0].abs().unsqueeze(1) / (clipping_threshold - EPS)
noisyspeech[clipped] = noisyspeech[clipped] / noisyspeech_maxamplevel
return noisyspeech
def snr_mix(src: torch.Tensor, dst: torch.Tensor, snr_low: int, snr_high: int, min_overlap: float):
if snr_low == snr_high:
snr = snr_low
else:
snr = np.random.randint(snr_low, snr_high)
mix = snr_mixer(src, dst, snr, min_overlap)
return mix
def mix_text(src_text: str, dst_text: str):
"""Mix text from different sources by concatenating them."""
if src_text == dst_text:
return src_text
return src_text + " " + dst_text
def mix_samples(wavs: torch.Tensor, infos: tp.List[SoundInfo], aug_p: float, mix_p: float,
snr_low: int, snr_high: int, min_overlap: float):
"""Mix samples within a batch, summing the waveforms and concatenating the text infos.
Args:
wavs (torch.Tensor): Audio tensors of shape [B, C, T].
infos (list[SoundInfo]): List of SoundInfo items corresponding to the audio.
aug_p (float): Augmentation probability.
mix_p (float): Proportion of items in the batch to mix (and merge) together.
snr_low (int): Lowerbound for sampling SNR.
snr_high (int): Upperbound for sampling SNR.
min_overlap (float): Minimum overlap between mixed samples.
Returns:
tuple[torch.Tensor, list[SoundInfo]]: A tuple containing the mixed wavs
and mixed SoundInfo for the given batch.
"""
# no mixing to perform within the batch
if mix_p == 0:
return wavs, infos
if random.uniform(0, 1) < aug_p:
# perform all augmentations on waveforms as [B, T]
# randomly picking pairs of audio to mix
assert wavs.size(1) == 1, f"Mix samples requires monophonic audio but C={wavs.size(1)}"
wavs = wavs.mean(dim=1, keepdim=False)
B, T = wavs.shape
k = int(mix_p * B)
mixed_sources_idx = torch.randperm(B)[:k]
mixed_targets_idx = torch.randperm(B)[:k]
aug_wavs = snr_mix(
wavs[mixed_sources_idx],
wavs[mixed_targets_idx],
snr_low,
snr_high,
min_overlap,
)
# mixing textual descriptions in metadata
descriptions = [info.description for info in infos]
aug_infos = []
for i, j in zip(mixed_sources_idx, mixed_targets_idx):
text = mix_text(descriptions[i], descriptions[j])
m = replace(infos[i])
m.description = text
aug_infos.append(m)
# back to [B, C, T]
aug_wavs = aug_wavs.unsqueeze(1)
assert aug_wavs.shape[0] > 0, "Samples mixing returned empty batch."
assert aug_wavs.dim() == 3, f"Returned wav should be [B, C, T] but dim = {aug_wavs.dim()}"
assert aug_wavs.shape[0] == len(aug_infos), "Mismatch between number of wavs and infos in the batch"
return aug_wavs, aug_infos # [B, C, T]
else:
# randomly pick samples in the batch to match
# the batch size when performing audio mixing
B, C, T = wavs.shape
k = int(mix_p * B)
wav_idx = torch.randperm(B)[:k]
wavs = wavs[wav_idx]
infos = [infos[i] for i in wav_idx]
assert wavs.shape[0] == len(infos), "Mismatch between number of wavs and infos in the batch"
return wavs, infos # [B, C, T]
|