reach-vb's picture
reach-vb HF staff
Stereo demo update (#60)
5325fcc
raw
history blame
8.2 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Adapted from MIT code under the original license
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
import typing as tp
import torch
from torch import nn
from torch.nn import functional as F
# TODO: Replace with torchaudio.STFT?
def _stft(x: torch.Tensor, fft_size: int, hop_length: int, win_length: int,
window: tp.Optional[torch.Tensor], normalized: bool) -> torch.Tensor:
"""Perform STFT and convert to magnitude spectrogram.
Args:
x: Input signal tensor (B, C, T).
fft_size (int): FFT size.
hop_length (int): Hop size.
win_length (int): Window length.
window (torch.Tensor or None): Window function type.
normalized (bool): Whether to normalize the STFT or not.
Returns:
torch.Tensor: Magnitude spectrogram (B, C, #frames, fft_size // 2 + 1).
"""
B, C, T = x.shape
x_stft = torch.stft(
x.view(-1, T), fft_size, hop_length, win_length, window,
normalized=normalized, return_complex=True,
)
x_stft = x_stft.view(B, C, *x_stft.shape[1:])
real = x_stft.real
imag = x_stft.imag
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1)
class SpectralConvergenceLoss(nn.Module):
"""Spectral convergence loss.
"""
def __init__(self, epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
self.epsilon = epsilon
def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor):
"""Calculate forward propagation.
Args:
x_mag: Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag: Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
torch.Tensor: Spectral convergence loss value.
"""
return torch.norm(y_mag - x_mag, p="fro") / (torch.norm(y_mag, p="fro") + self.epsilon)
class LogSTFTMagnitudeLoss(nn.Module):
"""Log STFT magnitude loss.
Args:
epsilon (float): Epsilon value for numerical stability.
"""
def __init__(self, epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
self.epsilon = epsilon
def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor):
"""Calculate forward propagation.
Args:
x_mag (torch.Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (torch.Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
torch.Tensor: Log STFT magnitude loss value.
"""
return F.l1_loss(torch.log(self.epsilon + y_mag), torch.log(self.epsilon + x_mag))
class STFTLosses(nn.Module):
"""STFT losses.
Args:
n_fft (int): Size of FFT.
hop_length (int): Hop length.
win_length (int): Window length.
window (str): Window function type.
normalized (bool): Whether to use normalized STFT or not.
epsilon (float): Epsilon for numerical stability.
"""
def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600,
window: str = "hann_window", normalized: bool = False,
epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.normalized = normalized
self.register_buffer("window", getattr(torch, window)(win_length))
self.spectral_convergenge_loss = SpectralConvergenceLoss(epsilon)
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss(epsilon)
def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Calculate forward propagation.
Args:
x (torch.Tensor): Predicted signal (B, T).
y (torch.Tensor): Groundtruth signal (B, T).
Returns:
torch.Tensor: Spectral convergence loss value.
torch.Tensor: Log STFT magnitude loss value.
"""
x_mag = _stft(x, self.n_fft, self.hop_length,
self.win_length, self.window, self.normalized) # type: ignore
y_mag = _stft(y, self.n_fft, self.hop_length,
self.win_length, self.window, self.normalized) # type: ignore
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
return sc_loss, mag_loss
class STFTLoss(nn.Module):
"""Single Resolution STFT loss.
Args:
n_fft (int): Nb of FFT.
hop_length (int): Hop length.
win_length (int): Window length.
window (str): Window function type.
normalized (bool): Whether to use normalized STFT or not.
epsilon (float): Epsilon for numerical stability.
factor_sc (float): Coefficient for the spectral loss.
factor_mag (float): Coefficient for the magnitude loss.
"""
def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600,
window: str = "hann_window", normalized: bool = False,
factor_sc: float = 0.1, factor_mag: float = 0.1,
epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
self.loss = STFTLosses(n_fft, hop_length, win_length, window, normalized, epsilon)
self.factor_sc = factor_sc
self.factor_mag = factor_mag
def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Calculate forward propagation.
Args:
x (torch.Tensor): Predicted signal (B, T).
y (torch.Tensor): Groundtruth signal (B, T).
Returns:
torch.Tensor: Single resolution STFT loss.
"""
sc_loss, mag_loss = self.loss(x, y)
return self.factor_sc * sc_loss + self.factor_mag * mag_loss
class MRSTFTLoss(nn.Module):
"""Multi resolution STFT loss.
Args:
n_ffts (Sequence[int]): Sequence of FFT sizes.
hop_lengths (Sequence[int]): Sequence of hop sizes.
win_lengths (Sequence[int]): Sequence of window lengths.
window (str): Window function type.
factor_sc (float): Coefficient for the spectral loss.
factor_mag (float): Coefficient for the magnitude loss.
normalized (bool): Whether to use normalized STFT or not.
epsilon (float): Epsilon for numerical stability.
"""
def __init__(self, n_ffts: tp.Sequence[int] = [1024, 2048, 512], hop_lengths: tp.Sequence[int] = [120, 240, 50],
win_lengths: tp.Sequence[int] = [600, 1200, 240], window: str = "hann_window",
factor_sc: float = 0.1, factor_mag: float = 0.1,
normalized: bool = False, epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
self.stft_losses = torch.nn.ModuleList()
for fs, ss, wl in zip(n_ffts, hop_lengths, win_lengths):
self.stft_losses += [STFTLosses(fs, ss, wl, window, normalized, epsilon)]
self.factor_sc = factor_sc
self.factor_mag = factor_mag
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
"""Calculate forward propagation.
Args:
x (torch.Tensor): Predicted signal (B, T).
y (torch.Tensor): Groundtruth signal (B, T).
Returns:
torch.Tensor: Multi resolution STFT loss.
"""
sc_loss = torch.Tensor([0.0])
mag_loss = torch.Tensor([0.0])
for f in self.stft_losses:
sc_l, mag_l = f(x, y)
sc_loss += sc_l
mag_loss += mag_l
sc_loss /= len(self.stft_losses)
mag_loss /= len(self.stft_losses)
return self.factor_sc * sc_loss + self.factor_mag * mag_loss