# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py # also released under the MIT license. import argparse from concurrent.futures import ProcessPoolExecutor import logging import os from pathlib import Path import subprocess as sp import sys from tempfile import NamedTemporaryFile import time import typing as tp import warnings import base64 from einops import rearrange import torch import gradio as gr from audiocraft.data.audio_utils import convert_audio from audiocraft.data.audio import audio_write from audiocraft.models.encodec import InterleaveStereoCompressionModel from audiocraft.models import MusicGen, MultiBandDiffusion from pydub import AudioSegment import io SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') MODEL = None # Last used model SPACE_ID = os.environ.get('SPACE_ID', '') IS_BATCHED = False # <- we hardcode it MAX_BATCH_SIZE = 12 BATCHED_DURATION = 15 INTERRUPTING = False MBD = None # We have to wrap subprocess call to clean a bit the log when using gr.make_waveform _old_call = sp.call def _call_nostderr(*args, **kwargs): # Avoid ffmpeg vomiting on the logs. kwargs['stderr'] = sp.DEVNULL kwargs['stdout'] = sp.DEVNULL _old_call(*args, **kwargs) sp.call = _call_nostderr # Preallocating the pool of processes. pool = ProcessPoolExecutor(4) pool.__enter__() def interrupt(): global INTERRUPTING INTERRUPTING = True class FileCleaner: def __init__(self, file_lifetime: float = 3600): self.file_lifetime = file_lifetime self.files = [] def add(self, path: tp.Union[str, Path]): self._cleanup() self.files.append((time.time(), Path(path))) def _cleanup(self): now = time.time() for time_added, path in list(self.files): if now - time_added > self.file_lifetime: if path.exists(): path.unlink() self.files.pop(0) else: break file_cleaner = FileCleaner() def load_model(version='facebook/musicgen-melody'): global MODEL print("Loading model", version) if MODEL is None or MODEL.name != version: del MODEL MODEL = None # in case loading would crash MODEL = MusicGen.get_pretrained(version) def load_diffusion(): global MBD if MBD is None: print("loading MBD") MBD = MultiBandDiffusion.get_mbd_musicgen() def _do_predictions(texts, melodies, duration, progress=False, gradio_progress=None, **gen_kwargs): MODEL.set_generation_params(duration=duration, **gen_kwargs) print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies]) be = time.time() processed_melodies = [] target_sr = 32000 target_ac = 1 for melody in melodies: if melody is None: processed_melodies.append(None) else: sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t() if melody.dim() == 1: melody = melody[None] melody = melody[..., :int(sr * duration)] melody = convert_audio(melody, sr, target_sr, target_ac) processed_melodies.append(melody) try: if any(m is not None for m in processed_melodies): outputs = MODEL.generate_with_chroma( descriptions=texts, melody_wavs=processed_melodies, melody_sample_rate=target_sr, progress=progress, return_tokens=USE_DIFFUSION ) else: outputs = MODEL.generate(texts, progress=progress, return_tokens=USE_DIFFUSION) except RuntimeError as e: raise gr.Error("Error while generating " + e.args[0]) if USE_DIFFUSION: if gradio_progress is not None: gradio_progress(1, desc='Running MultiBandDiffusion...') tokens = outputs[1] if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel): left, right = MODEL.compression_model.get_left_right_codes(tokens) tokens = torch.cat([left, right]) outputs_diffusion = MBD.tokens_to_wav(tokens) if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel): assert outputs_diffusion.shape[1] == 1 # output is mono outputs_diffusion = rearrange(outputs_diffusion, '(s b) c t -> b (s c) t', s=2) outputs = torch.cat([outputs[0], outputs_diffusion], dim=0) outputs = outputs.detach().cpu().float() out_wavs = [] for output in outputs: with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) out_wavs.append(file.name) file_cleaner.add(file.name) print("batch finished", len(texts), time.time() - be) print("Tempfiles currently stored: ", len(file_cleaner.files)) return out_wavs def predict_batched(texts, melodies): max_text_length = 512 texts = [text[:max_text_length] for text in texts] load_model('facebook/musicgen-stereo-melody') return _do_predictions(texts, melodies, BATCHED_DURATION) def predict_full(secret_token, model, model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()): if secret_token != SECRET_TOKEN: raise gr.Error( f'Invalid secret token. Please fork the original space if you want to use it for yourself.') global INTERRUPTING global USE_DIFFUSION INTERRUPTING = False progress(0, desc="Loading model...") model_path = model_path.strip() if model_path: if not Path(model_path).exists(): raise gr.Error(f"Model path {model_path} doesn't exist.") if not Path(model_path).is_dir(): raise gr.Error(f"Model path {model_path} must be a folder containing " "state_dict.bin and compression_state_dict_.bin.") model = model_path if temperature < 0: raise gr.Error("Temperature must be >= 0.") if topk < 0: raise gr.Error("Topk must be non-negative.") if topp < 0: raise gr.Error("Topp must be non-negative.") topk = int(topk) if decoder == "MultiBand_Diffusion": USE_DIFFUSION = True progress(0, desc="Loading diffusion model...") load_diffusion() else: USE_DIFFUSION = False load_model(model) max_generated = 0 def _progress(generated, to_generate): nonlocal max_generated max_generated = max(generated, max_generated) progress((min(max_generated, to_generate), to_generate)) if INTERRUPTING: raise gr.Error("Interrupted.") MODEL.set_custom_progress_callback(_progress) wavs = _do_predictions( [text], [melody], duration, progress=True, top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef, gradio_progress=progress) wav_path = wavs[0] if USE_DIFFUSION: wav_path = wavs[1] wav_base64 = "" # Convert WAV to MP3 mp3_path = wav_path.replace(".wav", ".mp3") sound = AudioSegment.from_wav(wav_path) sound.export(mp3_path, format="mp3") # Encode the MP3 file to base64 mp3_base64 = "" with open(mp3_path, "rb") as mp3_file: mp3_base64 = base64.b64encode(mp3_file.read()).decode('utf-8') # Prepend the appropriate data URI header mp3_base64_data_uri = 'data:audio/mp3;base64,' + mp3_base64 return mp3_base64_data_uri def toggle_audio_src(choice): if choice == "mic": return gr.update(source="microphone", value=None, label="Microphone") else: return gr.update(source="upload", value=None, label="File") def toggle_diffusion(choice): if choice == "MultiBand_Diffusion": return [gr.update(visible=True)] else: return [gr.update(visible=False)] def ui_full(): with gr.Blocks() as interface: gr.Markdown( """ # MusicGen This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284) """ ) with gr.Row(): with gr.Column(): with gr.Row(): secret_token = gr.Text( label='Secret Token', max_lines=1, placeholder='Enter your secret token' ) text = gr.Text(label="Input Text", interactive=True) with gr.Column(): radio = gr.Radio(["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic") melody = gr.Audio(source="upload", type="numpy", label="File", interactive=True, elem_id="melody-input") with gr.Row(): submit = gr.Button("Submit") # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. _ = gr.Button("Interrupt").click(fn=interrupt, queue=False) with gr.Row(): model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small", "facebook/musicgen-large", "facebook/musicgen-melody-large", "facebook/musicgen-stereo-small", "facebook/musicgen-stereo-medium", "facebook/musicgen-stereo-melody", "facebook/musicgen-stereo-large", "facebook/musicgen-stereo-melody-large"], label="Model", value="facebook/musicgen-stereo-large", interactive=True) model_path = gr.Text(label="Model Path (custom models)") with gr.Row(): decoder = gr.Radio(["Default", "MultiBand_Diffusion"], label="Decoder", value="Default", interactive=True) with gr.Row(): duration = gr.Slider(minimum=1, maximum=600, value=120, label="Duration", interactive=True) with gr.Row(): topk = gr.Number(label="Top-k", value=250, interactive=True) topp = gr.Number(label="Top-p", value=0, interactive=True) temperature = gr.Number(label="Temperature", value=1.0, interactive=True) cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True) with gr.Column(): audio_output = gr.Textbox(label="Generated Music (wav)") submit.click( fn=predict_full, inputs=[secret_token, model, model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=audio_output, api_name="run") gr.HTML("""
This space is a REST API to programmatically generate music.
Interested in using it? All credit is due to the original space, so go on and fork it 🤗