# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py import torch import torch.nn as nn import torch.nn.functional as F NUM_ZERO = 0 ORTHO = False ORTHO_v2 = False class AttnProcessor(nn.Module): def __init__(self): super().__init__() def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, id_embedding=None, id_scale=1.0, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IDAttnProcessor(nn.Module): r""" Attention processor for ID-Adapater. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. """ def __init__(self, hidden_size, cross_attention_dim=None): super().__init__() self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, id_embedding=None, id_scale=1.0, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # for id-adapter if id_embedding is not None: if NUM_ZERO == 0: id_key = self.id_to_k(id_embedding) id_value = self.id_to_v(id_embedding) else: zero_tensor = torch.zeros( (id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)), dtype=id_embedding.dtype, device=id_embedding.device, ) id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1)) id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1)) id_key = attn.head_to_batch_dim(id_key).to(query.dtype) id_value = attn.head_to_batch_dim(id_value).to(query.dtype) id_attention_probs = attn.get_attention_scores(query, id_key, None) id_hidden_states = torch.bmm(id_attention_probs, id_value) id_hidden_states = attn.batch_to_head_dim(id_hidden_states) if not ORTHO: hidden_states = hidden_states + id_scale * id_hidden_states else: projection = ( torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True) / torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True) * hidden_states ) orthogonal = id_hidden_states - projection hidden_states = hidden_states + id_scale * orthogonal # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class AttnProcessor2_0(nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, id_embedding=None, id_scale=1.0, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IDAttnProcessor2_0(torch.nn.Module): r""" Attention processor for ID-Adapater for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. """ def __init__(self, hidden_size, cross_attention_dim=None): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, id_embedding=None, id_scale=1.0, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # for id embedding if id_embedding is not None: if NUM_ZERO == 0: id_key = self.id_to_k(id_embedding).to(query.dtype) id_value = self.id_to_v(id_embedding).to(query.dtype) else: zero_tensor = torch.zeros( (id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)), dtype=id_embedding.dtype, device=id_embedding.device, ) id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype) id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype) id_key = id_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) id_value = id_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) id_hidden_states = F.scaled_dot_product_attention( query, id_key, id_value, attn_mask=None, dropout_p=0.0, is_causal=False ) id_hidden_states = id_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) id_hidden_states = id_hidden_states.to(query.dtype) if not ORTHO and not ORTHO_v2: hidden_states = hidden_states + id_scale * id_hidden_states elif ORTHO_v2: orig_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) id_hidden_states = id_hidden_states.to(torch.float32) attn_map = query @ id_key.transpose(-2, -1) attn_mean = attn_map.softmax(dim=-1).mean(dim=1) attn_mean = attn_mean[:, :, :5].sum(dim=-1, keepdim=True) projection = ( torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True) / torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True) * hidden_states ) orthogonal = id_hidden_states + (attn_mean - 1) * projection hidden_states = hidden_states + id_scale * orthogonal hidden_states = hidden_states.to(orig_dtype) else: orig_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) id_hidden_states = id_hidden_states.to(torch.float32) projection = ( torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True) / torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True) * hidden_states ) orthogonal = id_hidden_states - projection hidden_states = hidden_states + id_scale * orthogonal hidden_states = hidden_states.to(orig_dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states