File size: 7,024 Bytes
6a4b741
 
 
 
 
 
 
 
 
 
 
 
f2f0e09
6a4b741
 
 
 
 
 
 
f2f0e09
6a4b741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f0e09
6a4b741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f0e09
6a4b741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f0e09
6a4b741
 
 
 
 
 
a7104ac
 
6a4b741
 
 
 
 
 
 
 
a7104ac
6a4b741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abed78e
6a4b741
 
ab17f6e
6a4b741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr 
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
import lora
from time import sleep
import copy

sdxl_loras = [
        ("pixel-art-xl.jpeg", "Pixel Art XL", "nerijs/pixel-art-xl", "pixel art", "pixel-art-xl.safetensors", True),
        ("papercut_SDXL.jpeg", "Papercut SDXL", "TheLastBen/Papercut_SDXL", "papercut", "papercut.safetensors", False),
        ("lego-minifig-xl.jpeg", "Lego Minifig XL", "nerijs/lego-minifig-xl", "lego minifig", "legominifig-v1.0-000003.safetensors", True),
        ("embroid.png","Embroidery Style","ostris/embroidery_style_lora_sdxl","","embroidered_style_v1_sdxl.safetensors",False),    
        ("3d_style_4.jpeg", "3D Render Style", "goofyai/3d_render_style_xl", "3d style", "3d_render_style_xl.safetensors", True),
        ("LogoRedmond-LogoLoraForSDXL.jpeg","Logo.Redmond", "artificialguybr/LogoRedmond-LogoLoraForSDXL", "LogoRedAF", "LogoRedmond_LogoRedAF.safetensors", False),
        ("LineAni.Redmond.png", "LinearManga.Redmond", "artificialguybr/LineAniRedmond-LinearMangaSDXL", "LineAniAF", "LineAniRedmond-LineAniAF.safetensors", True),
        ("watercolor.png","Watercolor Style","ostris/watercolor_style_lora_sdxl","","watercolor_v1_sdxl.safetensors",False),
        ("dog.png", "Cyborg Style", "goofyai/cyborg_style_xl", "cyborg style", "cyborg_style_xl-off.safetensors", True),
        ("ToyRedmond-ToyLoraForSDXL10.png","Toy.Redmond", "artificialguybr/ToyRedmond-ToyLoraForSDXL10", "FnkRedmAF", "ToyRedmond-FnkRedmAF.safetensors", True),   
        ("voxel-xl-lora.png", "Voxel XL", "Fictiverse/Voxel_XL_Lora", "voxel style", "VoxelXL_v1.safetensors", True),
        ("crayon.png","Crayon Style","ostris/crayon_style_lora_sdxl","","crayons_v1_sdxl.safetensors",False),
        ("pikachu.webp", "Pikachu XL", "TheLastBen/Pikachu_SDXL", "pikachu", "pikachu.safetensors", False),
        ("william_eggleston.webp", "William Eggleston Style", "TheLastBen/William_Eggleston_Style_SDXL", "by william eggleston", "wegg.safetensors", False),
        ("josef_koudelka.webp", "Josef Koudelka Style", "TheLastBen/Josef_Koudelka_Style_SDXL", "by josef koudelka", "koud.safetensors", False),
        ("corgi_brick.jpeg", "Lego BrickHeadz", "nerijs/lego-brickheadz-xl", "lego brickheadz", "legobrickheadz-v1.0-000004.safetensors", True)
]

saved_names = [hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras]
    
def update_selection(selected_state: gr.SelectData):
    lora_repo = sdxl_loras[selected_state.index][2]
    instance_prompt = sdxl_loras[selected_state.index][3]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
    return updated_text, instance_prompt, selected_state

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
mutable_pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    vae=vae,
    torch_dtype=torch.float16,
).to("cpu")
original_pipe = copy.deepcopy(mutable_pipe)
mutable_pipe.to("cuda")

last_lora = ""
last_merged = False

def run_lora(prompt, negative, weight, selected_state):
    global last_lora, last_merged
    pipe = mutable_pipe
    if(not selected_state):
        raise gr.Error("You must select a LoRA")
    repo_name = sdxl_loras[selected_state.index][2]
    weight_name = sdxl_loras[selected_state.index][4]
    full_path_lora = saved_names[selected_state.index]
    cross_attention_kwargs = None
    if(last_lora != repo_name):
        if(last_merged):
            pipe = copy.deepcopy(original_pipe)
            pipe.to("cuda")
        else:
            pipe.unload_lora_weights()
        is_compatible = sdxl_loras[selected_state.index][5]
        if(is_compatible):
            pipe.load_lora_weights(full_path_lora)
            cross_attention_kwargs={"scale": weight}
        else:
            for weights_file in [full_path_lora]:
                if ";" in weights_file:
                    weights_file, multiplier = weights_file.split(";")
                    multiplier = float(weight)
                else:
                    multiplier = 1.0

                lora_model, weights_sd = lora.create_network_from_weights(
                    multiplier, full_path_lora, pipe.vae, pipe.text_encoder, pipe.unet, for_inference=True
                )
                lora_model.merge_to(pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda")
            last_merged = True
    
    image = pipe(
    prompt=prompt, negative_prompt=negative, num_inference_steps=20, guidance_scale=7.5, cross_attention_kwargs=cross_attention_kwargs).images[0]
    last_lora = repo_name
    return image
    
css = '''
#title{text-align: center;margin-bottom: 0.5em}
#title h1{font-size: 3em}
#prompt textarea{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 38px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#gallery{display:flex}
#gallery .grid-wrap{min-height: 100%;}
'''

with gr.Blocks(css=css) as demo:
    title = gr.Markdown("# LoRA the Explorer πŸ”Ž", elem_id="title")
    with gr.Row():
        gallery = gr.Gallery(value=[(a, b) for a, b, _, _, _, _ in sdxl_loras],
                             label="LoRA Gallery",
                             allow_preview=False,
                             columns=3, 
                             elem_id="gallery"
                            )
        with gr.Column():
            prompt_title = gr.Markdown(value="### Click on a LoRA in the gallery to select it", visible=True)
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", elem_id="prompt")
                button = gr.Button("Run", elem_id="run_button")
            result = gr.Image(interactive=False, label="result")
            with gr.Accordion("Advanced options", open=False):
                negative = gr.Textbox(label="Negative Prompt")
                weight = gr.Slider(0, 1, value=1, step=0.1, label="LoRA weight")
    with gr.Column():
                gr.Markdown("Use it with:")
                with gr.Row():
                    with gr.Accordion("🧨 diffusers", open=False):
                        gr.Markdown("")
                    with gr.Accordion("ComfyUI", open=False):
                        gr.Markdown("")
                    with gr.Accordion("Invoke AI", open=False):
                        gr.Markdown("")
                    with gr.Accordion("SD.Next (AUTO1111 fork)", open=False):
                        gr.Markdown("")
    selected_state = gr.State()
    gallery.select(update_selection, outputs=[prompt_title, prompt, selected_state], queue=False, show_progress=False)
    prompt.submit(fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result)
    button.click(fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result)
    
    
demo.launch()