|
import gradio as gr |
|
import torch |
|
import os |
|
import spaces |
|
import uuid |
|
|
|
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler |
|
from diffusers.utils import export_to_video |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
from PIL import Image |
|
|
|
|
|
bases = { |
|
"ToonYou": "frankjoshua/toonyou_beta6", |
|
"epiCRealism": "emilianJR/epiCRealism" |
|
} |
|
step_loaded = None |
|
base_loaded = "ToonYou" |
|
motion_loaded = None |
|
|
|
|
|
if not torch.cuda.is_available(): |
|
raise NotImplementedError("No GPU detected!") |
|
|
|
device = "cuda" |
|
dtype = torch.float16 |
|
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device) |
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") |
|
|
|
|
|
from safety_checker import StableDiffusionSafetyChecker |
|
from transformers import CLIPFeatureExtractor |
|
|
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device) |
|
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
def check_nsfw_images( |
|
images: list[Image.Image], |
|
) -> tuple[list[Image.Image], list[bool]]: |
|
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device) |
|
has_nsfw_concepts = safety_checker(images=[images], clip_input=safety_checker_input.pixel_values.to(device)) |
|
return images, has_nsfw_concepts |
|
|
|
|
|
@spaces.GPU(enable_queue=True) |
|
def generate_image(prompt, base, motion, step, progress=gr.Progress()): |
|
global step_loaded |
|
global base_loaded |
|
global motion_loaded |
|
print(prompt, base, step) |
|
|
|
if step_loaded != step: |
|
repo = "ByteDance/AnimateDiff-Lightning" |
|
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" |
|
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) |
|
step_loaded = step |
|
|
|
if base_loaded != base: |
|
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False) |
|
base_loaded = base |
|
|
|
if motion_loaded != motion: |
|
pipe.unload_lora_weights() |
|
if motion != "": |
|
pipe.load_lora_weights(motion, adapter_name="motion") |
|
pipe.set_adapters(["motion"], [0.7]) |
|
motion_loaded = motion |
|
|
|
progress((0, step)) |
|
def progress_callback(i, t, z): |
|
progress((i+1, step)) |
|
|
|
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step, callback=progress_callback, callback_steps=1) |
|
|
|
images, has_nsfw_concepts = check_nsfw_images([output.frames[0][0]]) |
|
if has_nsfw_concepts[0]: |
|
gr.Warning("NSFW content detected.") |
|
return None |
|
|
|
name = str(uuid.uuid4()).replace("-", "") |
|
path = f"/tmp/{name}.mp4" |
|
export_to_video(output.frames[0], path, fps=10) |
|
return path |
|
|
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.HTML( |
|
"<h1><center>AnimateDiff-Lightning ⚡</center></h1>" + |
|
"<p><center>Lightning-fast text-to-video generation</center></p>" + |
|
"<p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>" |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label='Prompt (English)' |
|
) |
|
with gr.Row(): |
|
select_base = gr.Dropdown( |
|
label='Base model', |
|
choices=[ |
|
"ToonYou", |
|
"epiCRealism", |
|
], |
|
value=base_loaded, |
|
interactive=True |
|
) |
|
select_motion = gr.Dropdown( |
|
label='Motion', |
|
choices=[ |
|
("Default", ""), |
|
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), |
|
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), |
|
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), |
|
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), |
|
("Pan left", "guoyww/animatediff-motion-lora-pan-left"), |
|
("Pan right", "guoyww/animatediff-motion-lora-pan-right"), |
|
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), |
|
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), |
|
], |
|
value="", |
|
interactive=True |
|
) |
|
select_step = gr.Dropdown( |
|
label='Inference steps', |
|
choices=[ |
|
('1-Step', 1), |
|
('2-Step', 2), |
|
('4-Step', 4), |
|
('8-Step', 8)], |
|
value=4, |
|
interactive=True |
|
) |
|
submit = gr.Button( |
|
scale=1, |
|
variant='primary' |
|
) |
|
video = gr.Video( |
|
label='AnimateDiff-Lightning', |
|
autoplay=True, |
|
height=512, |
|
width=512, |
|
elem_id="video_output" |
|
) |
|
|
|
prompt.submit( |
|
fn=generate_image, |
|
inputs=[prompt, select_base, select_motion, select_step], |
|
outputs=video, |
|
) |
|
submit.click( |
|
fn=generate_image, |
|
inputs=[prompt, select_base, select_motion, select_step], |
|
outputs=video, |
|
) |
|
|
|
demo.queue().launch() |