Spaces:
Paused
Paused
Commit
·
c6cc468
1
Parent(s):
f76ca19
Update app.py
Browse files
app.py
CHANGED
@@ -6,28 +6,24 @@ import gradio as gr
|
|
6 |
import numpy as np
|
7 |
import PIL.Image
|
8 |
import torch
|
9 |
-
from diffusers import
|
10 |
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
12 |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
|
13 |
|
|
|
|
|
|
|
14 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
15 |
if torch.cuda.is_available():
|
16 |
-
|
17 |
-
"latent-consistency/lcm-ssd-1b",
|
18 |
-
torch_dtype=torch.float16,
|
19 |
-
variant="fp16"
|
20 |
-
)
|
21 |
-
|
22 |
-
pipe = DiffusionPipeline.from_pretrained(
|
23 |
-
"segmind/SSD-1B",
|
24 |
-
unet=unet,
|
25 |
-
torch_dtype=torch.float16,
|
26 |
-
variant="fp16"
|
27 |
-
)
|
28 |
-
|
29 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
30 |
-
pipe.to(
|
|
|
|
|
|
|
|
|
|
|
31 |
else:
|
32 |
pipe = None
|
33 |
|
@@ -43,7 +39,6 @@ def generate(prompt: str,
|
|
43 |
seed: int = 0,
|
44 |
width: int = 1024,
|
45 |
height: int = 1024,
|
46 |
-
guidance_scale: float = 1.0,
|
47 |
num_inference_steps: int = 6) -> PIL.Image.Image:
|
48 |
|
49 |
generator = torch.Generator().manual_seed(seed)
|
@@ -55,7 +50,6 @@ def generate(prompt: str,
|
|
55 |
negative_prompt=negative_prompt,
|
56 |
width=width,
|
57 |
height=height,
|
58 |
-
guidance_scale=guidance_scale,
|
59 |
num_inference_steps=num_inference_steps,
|
60 |
generator=generator,
|
61 |
output_type='pil').images[0]
|
@@ -105,12 +99,6 @@ with gr.Blocks() as demo:
|
|
105 |
value=1024,
|
106 |
)
|
107 |
with gr.Row():
|
108 |
-
guidance_scale = gr.Slider(
|
109 |
-
label='Guidance scale',
|
110 |
-
minimum=1,
|
111 |
-
maximum=20,
|
112 |
-
step=0.1,
|
113 |
-
value=5.0)
|
114 |
num_inference_steps = gr.Slider(
|
115 |
label='Number of inference steps',
|
116 |
minimum=2,
|
@@ -133,7 +121,6 @@ with gr.Blocks() as demo:
|
|
133 |
seed,
|
134 |
width,
|
135 |
height,
|
136 |
-
guidance_scale,
|
137 |
num_inference_steps,
|
138 |
]
|
139 |
prompt.submit(
|
|
|
6 |
import numpy as np
|
7 |
import PIL.Image
|
8 |
import torch
|
9 |
+
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
10 |
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
12 |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
|
13 |
|
14 |
+
MODEL_ID = "segmind/SSD-1B"
|
15 |
+
ADAPTER_ID = "latent-consistency/lcm-lora-ssd-1b"
|
16 |
+
|
17 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
18 |
if torch.cuda.is_available():
|
19 |
+
pipe = AutoPipelineForText2Image.from_pretrained(MODEL_ID, torch_dtype=torch.float16, variant="fp16")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
21 |
+
pipe.to("cuda")
|
22 |
+
|
23 |
+
# load and fuse
|
24 |
+
pipe.load_lora_weights(ADAPTER_ID)
|
25 |
+
pipe.fuse_lora()
|
26 |
+
|
27 |
else:
|
28 |
pipe = None
|
29 |
|
|
|
39 |
seed: int = 0,
|
40 |
width: int = 1024,
|
41 |
height: int = 1024,
|
|
|
42 |
num_inference_steps: int = 6) -> PIL.Image.Image:
|
43 |
|
44 |
generator = torch.Generator().manual_seed(seed)
|
|
|
50 |
negative_prompt=negative_prompt,
|
51 |
width=width,
|
52 |
height=height,
|
|
|
53 |
num_inference_steps=num_inference_steps,
|
54 |
generator=generator,
|
55 |
output_type='pil').images[0]
|
|
|
99 |
value=1024,
|
100 |
)
|
101 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
num_inference_steps = gr.Slider(
|
103 |
label='Number of inference steps',
|
104 |
minimum=2,
|
|
|
121 |
seed,
|
122 |
width,
|
123 |
height,
|
|
|
124 |
num_inference_steps,
|
125 |
]
|
126 |
prompt.submit(
|