File size: 4,155 Bytes
f2a478c
 
 
 
 
 
 
 
369c9ca
f2a478c
 
 
369c9ca
f2a478c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369c9ca
f2a478c
 
 
 
 
 
 
 
 
 
 
 
 
369c9ca
f2a478c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369c9ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a478c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369c9ca
 
f2a478c
369c9ca
 
f2a478c
369c9ca
 
f2a478c
 
369c9ca
 
 
 
 
 
 
 
 
f2a478c
 
369c9ca
 
 
 
 
 
 
f2a478c
369c9ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
from torch.utils.data import Dataset, DataLoader

import pandas as pd

from transformers import BertTokenizerFast, BertForSequenceClassification
from transformers import Trainer, TrainingArguments

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_name = "bert-base-uncased"
tokenizer = BertTokenizerFast.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=6).to(device)
max_len = 200

training_args = TrainingArguments(
    output_dir="results",
    num_train_epochs=1,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=64,
    warmup_steps=500,
    learning_rate=5e-5,
    weight_decay=0.01,
    logging_dir="./logs",
    logging_steps=10
    )

# dataset class that inherits from torch.utils.data.Dataset

    
class TokenizerDataset(Dataset):
    def __init__(self, strings):
        self.strings = strings
    
    def __getitem__(self, idx):
        return self.strings[idx]
    
    def __len__(self):
        return len(self.strings)
    

train_data = pd.read_csv("data/train.csv")
print(train_data)
train_text = train_data["comment_text"]
train_labels = train_data[["toxic", "severe_toxic", 
                           "obscene", "threat", 
                           "insult", "identity_hate"]]

test_text = pd.read_csv("data/test.csv")["comment_text"]
test_labels = pd.read_csv("data/test_labels.csv")[[
                           "toxic", "severe_toxic", 
                           "obscene", "threat", 
                           "insult", "identity_hate"]]

# data preprocessing



train_text = train_text.values.tolist()
train_labels = train_labels.values.tolist()
test_text = test_text.values.tolist()
test_labels = test_labels.values.tolist()


# prepare tokenizer and dataset

class TweetDataset(Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels
        self.tok = tokenizer
    
    def __getitem__(self, idx):
        print(idx)
        # print(len(self.labels))
        encoding = self.tok(self.encodings.strings[idx], truncation=True, 
                            padding="max_length", max_length=max_len)
        # print(encoding.items())
        item = { key: torch.tensor(val) for key, val in encoding.items() }
        item['labels'] = torch.tensor(self.labels[idx])
        # print(item)
        return item
    
    def __len__(self):
        return len(self.labels)





train_strings = TokenizerDataset(train_text)
test_strings = TokenizerDataset(test_text)

train_dataloader = DataLoader(train_strings, batch_size=16, shuffle=True)
test_dataloader = DataLoader(test_strings, batch_size=16, shuffle=True)




# train_encodings = tokenizer.batch_encode_plus(train_text, \
#                             max_length=200, pad_to_max_length=True, \
#                             truncation=True, return_token_type_ids=False \
#                             )
# test_encodings = tokenizer.batch_encode_plus(test_text, \
#                             max_length=200, pad_to_max_length=True, \
#                             truncation=True, return_token_type_ids=False \
#                             )

# train_encodings = tokenizer(train_text, truncation=True, padding=True)
# test_encodings = tokenizer(test_text, truncation=True, padding=True)

train_dataset = TweetDataset(train_strings, train_labels)
test_dataset = TweetDataset(test_strings, test_labels)

print(len(train_dataset.labels))
print(len(train_strings))


class MultilabelTrainer(Trainer):
    def compute_loss(self, model, inputs, return_outputs=False):
        labels = inputs.pop("labels")
        outputs = model(**inputs)
        logits = outputs.logits
        loss_fct = torch.nn.BCEWithLogitsLoss()
        loss = loss_fct(logits.view(-1, self.model.config.num_labels), 
                        labels.float().view(-1, self.model.config.num_labels))
        return (loss, outputs) if return_outputs else loss


# training
trainer = MultilabelTrainer(
    model=model, 
    args=training_args, 
    train_dataset=train_dataset, 
    eval_dataset=test_dataset
    )

trainer.train()