jbraha commited on
Commit
c8575c8
·
1 Parent(s): e88d04f

'mint autosave'

Browse files
Files changed (1) hide show
  1. app.py +23 -17
app.py CHANGED
@@ -19,9 +19,8 @@ labels = {'LABEL_0': 'toxic', 'LABEL_1': 'severe_toxic', 'LABEL_2': 'obscene', '
19
  # make a dictionary of the labels and values
20
  def unpack(result):
21
  output = {}
22
- if type(result) is list:
23
- for res in result:
24
- output[labels[res['label']]] = res['score']
25
  return output
26
 
27
  def add_to_table(input, result, output):
@@ -44,16 +43,17 @@ option = st.selectbox(
44
  ('Default', 'Fine-Tuned' , 'Roberta'))
45
 
46
 
47
- if option == 'Fine-Tuned':
48
- model = AutoModelForSequenceClassification.from_pretrained(fine_tuned)
49
- tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
50
- classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer, top_k=None)
51
- elif option == 'Roberta':
52
- model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
53
- tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
54
- classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
55
- else:
56
- classifier = pipeline('sentiment-analysis')
 
57
 
58
 
59
 
@@ -75,12 +75,18 @@ strings = [ "D'aww! He matches this background colour I'm seemingly stuck with.
75
 
76
 
77
  if st.button('Analyze'):
78
- result = classifier(input)
79
- result = result[0]
80
  if option == 'Fine-Tuned':
 
 
81
  result = unpack(result)
82
  add_to_table(input, result, output)
83
- else:
 
 
 
 
 
 
84
  st.write(result)
85
  else:
86
  st.write('Excited to analyze!')
@@ -88,7 +94,7 @@ else:
88
 
89
 
90
  for string in strings:
91
- item = classifier(string)
92
  item = item[0]
93
  item = unpack(item)
94
  add_to_table(string, item, output)
 
19
  # make a dictionary of the labels and values
20
  def unpack(result):
21
  output = {}
22
+ for res in result:
23
+ output[labels[res['label']]] = res['score']
 
24
  return output
25
 
26
  def add_to_table(input, result, output):
 
43
  ('Default', 'Fine-Tuned' , 'Roberta'))
44
 
45
 
46
+ # init classifiers
47
+
48
+ model = AutoModelForSequenceClassification.from_pretrained(fine_tuned)
49
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
50
+ ft_classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer, top_k=None)
51
+
52
+ model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
53
+ tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
54
+ rob_classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
55
+
56
+ def_classifier = pipeline('sentiment-analysis')
57
 
58
 
59
 
 
75
 
76
 
77
  if st.button('Analyze'):
 
 
78
  if option == 'Fine-Tuned':
79
+ result = ft_classifier(input)
80
+ result = result[0]
81
  result = unpack(result)
82
  add_to_table(input, result, output)
83
+ elif option == 'Roberta':
84
+ result = rob_classifier(input)
85
+ result = result[0]
86
+ st.write(result)
87
+ elif option == 'Default':
88
+ result = def_classifier(input)
89
+ result = result[0]
90
  st.write(result)
91
  else:
92
  st.write('Excited to analyze!')
 
94
 
95
 
96
  for string in strings:
97
+ item = ft_classifier(string)
98
  item = item[0]
99
  item = unpack(item)
100
  add_to_table(string, item, output)