|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
import time
|
|
import requests
|
|
|
|
|
|
from openai import OpenAI
|
|
from requests import RequestException
|
|
|
|
|
|
from App_Function_Libraries.Local_Summarization_Lib import openai_api_key, client
|
|
from App_Function_Libraries.Utils import load_and_log_configs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_text_from_segments(segments):
|
|
logging.debug(f"Segments received: {segments}")
|
|
logging.debug(f"Type of segments: {type(segments)}")
|
|
|
|
text = ""
|
|
|
|
if isinstance(segments, list):
|
|
for segment in segments:
|
|
logging.debug(f"Current segment: {segment}")
|
|
logging.debug(f"Type of segment: {type(segment)}")
|
|
if 'Text' in segment:
|
|
text += segment['Text'] + " "
|
|
else:
|
|
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
|
|
else:
|
|
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
|
|
|
|
return text.strip()
|
|
|
|
|
|
|
|
def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
|
loaded_config_data = load_and_log_configs()
|
|
|
|
try:
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("OpenAI: #1 API key not provided as parameter")
|
|
logging.info("OpenAI: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['openai']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.error("OpenAI: #2 API key not found or is empty")
|
|
return "OpenAI: API Key Not Provided/Found in Config file or is empty"
|
|
|
|
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
|
|
|
|
|
logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
|
|
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
|
|
|
|
if isinstance(input_data, str):
|
|
if input_data.strip().startswith('{'):
|
|
|
|
logging.debug("OpenAI: Parsing provided JSON string data for summarization")
|
|
try:
|
|
data = json.loads(input_data)
|
|
except json.JSONDecodeError as e:
|
|
logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
|
|
return f"OpenAI: Error parsing JSON input: {str(e)}"
|
|
elif os.path.isfile(input_data):
|
|
logging.debug("OpenAI: Loading JSON data from file for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("OpenAI: Using provided string data for summarization")
|
|
data = input_data
|
|
else:
|
|
data = input_data
|
|
|
|
logging.debug(f"OpenAI: Processed data type: {type(data)}")
|
|
logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")
|
|
|
|
|
|
if isinstance(data, dict):
|
|
if 'summary' in data:
|
|
logging.debug("OpenAI: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
elif 'segments' in data:
|
|
text = extract_text_from_segments(data['segments'])
|
|
else:
|
|
text = json.dumps(data)
|
|
elif isinstance(data, list):
|
|
text = extract_text_from_segments(data)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")
|
|
|
|
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
|
|
logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
|
|
logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")
|
|
|
|
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
|
|
logging.debug(f"OpenAI: Using model: {openai_model}")
|
|
|
|
headers = {
|
|
'Authorization': f'Bearer {openai_api_key}',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
logging.debug(
|
|
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
|
|
logging.debug("openai: Preparing data + prompt for submittal")
|
|
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
|
if temp is None:
|
|
temp = 0.7
|
|
if system_message is None:
|
|
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
|
temp = float(temp)
|
|
data = {
|
|
"model": openai_model,
|
|
"messages": [
|
|
{"role": "system", "content": system_message},
|
|
{"role": "user", "content": openai_prompt}
|
|
],
|
|
"max_tokens": 4096,
|
|
"temperature": temp
|
|
}
|
|
|
|
logging.debug("OpenAI: Posting request")
|
|
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
|
|
|
|
if response.status_code == 200:
|
|
response_data = response.json()
|
|
if 'choices' in response_data and len(response_data['choices']) > 0:
|
|
chat_response = response_data['choices'][0]['message']['content'].strip()
|
|
logging.debug("openai: Chat Sent successfully")
|
|
return chat_response
|
|
else:
|
|
logging.warning("openai: Chat response not found in the response data")
|
|
return "openai: Chat not available"
|
|
else:
|
|
logging.error(f"OpenAI: Chat request failed with status code {response.status_code}")
|
|
logging.error(f"OpenAI: Error response: {response.text}")
|
|
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
|
|
except json.JSONDecodeError as e:
|
|
logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
|
|
return f"OpenAI: Error decoding JSON input: {str(e)}"
|
|
except requests.RequestException as e:
|
|
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
|
|
return f"OpenAI: Error making API request: {str(e)}"
|
|
except Exception as e:
|
|
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
|
|
return f"OpenAI: Unexpected error occurred: {str(e)}"
|
|
|
|
|
|
def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None):
|
|
try:
|
|
loaded_config_data = load_and_log_configs()
|
|
global anthropic_api_key
|
|
|
|
if api_key is None:
|
|
logging.info("Anthropic: API key not provided as parameter")
|
|
logging.info("Anthropic: Attempting to use API key from config file")
|
|
anthropic_api_key = loaded_config_data['api_keys']['anthropic']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.error("Anthropic: API key not found or is empty")
|
|
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
|
|
|
|
logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
|
|
|
if system_prompt is not None:
|
|
logging.debug("Anthropic: Using provided system prompt")
|
|
pass
|
|
else:
|
|
system_prompt = "You are a helpful assistant"
|
|
|
|
logging.debug(f"AnthropicAI: Loaded data: {input_data}")
|
|
logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")
|
|
|
|
anthropic_model = loaded_config_data['models']['anthropic']
|
|
|
|
headers = {
|
|
'x-api-key': anthropic_api_key,
|
|
'anthropic-version': '2023-06-01',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
anthropic_user_prompt = custom_prompt_arg
|
|
logging.debug(f"Anthropic: User Prompt is {anthropic_user_prompt}")
|
|
user_message = {
|
|
"role": "user",
|
|
"content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
|
|
}
|
|
|
|
data = {
|
|
"model": model,
|
|
"max_tokens": 4096,
|
|
"messages": [user_message],
|
|
"stop_sequences": ["\n\nHuman:"],
|
|
"temperature": 0.1,
|
|
"top_k": 0,
|
|
"top_p": 1.0,
|
|
"metadata": {
|
|
"user_id": "example_user_id",
|
|
},
|
|
"stream": False,
|
|
"system": f"{system_prompt}"
|
|
}
|
|
|
|
for attempt in range(max_retries):
|
|
try:
|
|
logging.debug("anthropic: Posting request to API")
|
|
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
|
|
|
|
|
|
if response.status_code == 200:
|
|
logging.debug("anthropic: Post submittal successful")
|
|
response_data = response.json()
|
|
try:
|
|
chat_response = response_data['content'][0]['text'].strip()
|
|
logging.debug("anthropic: Chat request successful")
|
|
print("Chat request processed successfully.")
|
|
return chat_response
|
|
except (IndexError, KeyError) as e:
|
|
logging.debug("anthropic: Unexpected data in response")
|
|
print("Unexpected response format from Anthropic API:", response.text)
|
|
return None
|
|
elif response.status_code == 500:
|
|
logging.debug("anthropic: Internal server error")
|
|
print("Internal server error from API. Retrying may be necessary.")
|
|
time.sleep(retry_delay)
|
|
else:
|
|
logging.debug(
|
|
f"anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
|
|
print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
|
|
return None
|
|
|
|
except RequestException as e:
|
|
logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
|
|
if attempt < max_retries - 1:
|
|
time.sleep(retry_delay)
|
|
else:
|
|
return f"anthropic: Network error: {str(e)}"
|
|
except Exception as e:
|
|
logging.error(f"anthropic: Error in processing: {str(e)}")
|
|
return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
|
|
|
|
|
|
|
|
def chat_with_cohere(api_key, input_data, model, custom_prompt_arg, system_prompt=None):
|
|
global cohere_api_key
|
|
loaded_config_data = load_and_log_configs()
|
|
try:
|
|
|
|
if api_key is None:
|
|
logging.info("cohere: API key not provided as parameter")
|
|
logging.info("cohere: Attempting to use API key from config file")
|
|
cohere_api_key = loaded_config_data['api_keys']['cohere']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.error("cohere: API key not found or is empty")
|
|
return "cohere: API Key Not Provided/Found in Config file or is empty"
|
|
|
|
logging.debug(f"cohere: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
|
|
|
logging.debug(f"Cohere: Loaded data: {input_data}")
|
|
logging.debug(f"Cohere: Type of data: {type(input_data)}")
|
|
|
|
cohere_model = loaded_config_data['models']['cohere']
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'content-type': 'application/json',
|
|
'Authorization': f'Bearer {cohere_api_key}'
|
|
}
|
|
|
|
if system_prompt is not None:
|
|
logging.debug("Anthropic: Using provided system prompt")
|
|
pass
|
|
else:
|
|
system_prompt = "You are a helpful assistant"
|
|
|
|
cohere_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
|
|
logging.debug(f"cohere: User Prompt being sent is {cohere_prompt}")
|
|
|
|
logging.debug(f"cohere: System Prompt being sent is {system_prompt}")
|
|
|
|
data = {
|
|
"chat_history": [
|
|
{"role": "SYSTEM", "message": f"system_prompt"},
|
|
],
|
|
"message": f"{cohere_prompt}",
|
|
"model": model,
|
|
"connectors": [{"id": "web-search"}]
|
|
}
|
|
|
|
logging.debug("cohere: Submitting request to API endpoint")
|
|
print("cohere: Submitting request to API endpoint")
|
|
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
|
|
response_data = response.json()
|
|
logging.debug("API Response Data: %s", response_data)
|
|
|
|
if response.status_code == 200:
|
|
if 'text' in response_data:
|
|
chat_response = response_data['text'].strip()
|
|
logging.debug("cohere: Chat request successful")
|
|
print("Chat request processed successfully.")
|
|
return chat_response
|
|
else:
|
|
logging.error("Expected data not found in API response.")
|
|
return "Expected data not found in API response."
|
|
else:
|
|
logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}")
|
|
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
|
|
return f"cohere: API request failed: {response.text}"
|
|
|
|
except Exception as e:
|
|
logging.error("cohere: Error in processing: %s", str(e))
|
|
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"
|
|
|
|
|
|
|
|
def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
|
logging.debug("Groq: Summarization process starting...")
|
|
try:
|
|
logging.debug("Groq: Loading and validating configurations")
|
|
loaded_config_data = load_and_log_configs()
|
|
if loaded_config_data is None:
|
|
logging.error("Failed to load configuration data")
|
|
groq_api_key = None
|
|
else:
|
|
|
|
if api_key and api_key.strip():
|
|
groq_api_key = api_key
|
|
logging.info("Groq: Using API key provided as parameter")
|
|
else:
|
|
|
|
groq_api_key = loaded_config_data['api_keys'].get('groq')
|
|
if groq_api_key:
|
|
logging.info("Groq: Using API key from config file")
|
|
else:
|
|
logging.warning("Groq: No API key found in config file")
|
|
|
|
|
|
if not groq_api_key or not groq_api_key.strip():
|
|
logging.error("Anthropic: No valid API key available")
|
|
|
|
|
|
|
|
logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")
|
|
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("Groq: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("Groq: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
|
|
logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
|
logging.debug(f"Groq: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("Groq: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Groq: Invalid input data format")
|
|
|
|
|
|
groq_model = loaded_config_data['models']['groq']
|
|
|
|
if temp is None:
|
|
temp = 0.2
|
|
temp = float(temp)
|
|
if system_message is None:
|
|
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
|
|
|
headers = {
|
|
'Authorization': f'Bearer {groq_api_key}',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
|
logging.debug("groq: Prompt being sent is {groq_prompt}")
|
|
|
|
data = {
|
|
"messages": [
|
|
{
|
|
"role": "system",
|
|
"content": system_message,
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": groq_prompt,
|
|
}
|
|
],
|
|
"model": groq_model,
|
|
"temperature": temp
|
|
}
|
|
|
|
logging.debug("groq: Submitting request to API endpoint")
|
|
print("groq: Submitting request to API endpoint")
|
|
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
|
|
|
|
response_data = response.json()
|
|
logging.debug("API Response Data: %s", response_data)
|
|
|
|
if response.status_code == 200:
|
|
if 'choices' in response_data and len(response_data['choices']) > 0:
|
|
summary = response_data['choices'][0]['message']['content'].strip()
|
|
logging.debug("groq: Chat request successful")
|
|
print("Groq: Chat request successful.")
|
|
return summary
|
|
else:
|
|
logging.error("Groq(chat): Expected data not found in API response.")
|
|
return "Groq(chat): Expected data not found in API response."
|
|
else:
|
|
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
|
|
return f"groq: API request failed: {response.text}"
|
|
|
|
except Exception as e:
|
|
logging.error("groq: Error in processing: %s", str(e))
|
|
return f"groq: Error occurred while processing summary with groq: {str(e)}"
|
|
|
|
|
|
def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
|
import requests
|
|
import json
|
|
global openrouter_model, openrouter_api_key
|
|
try:
|
|
logging.debug("OpenRouter: Loading and validating configurations")
|
|
loaded_config_data = load_and_log_configs()
|
|
if loaded_config_data is None:
|
|
logging.error("Failed to load configuration data")
|
|
openrouter_api_key = None
|
|
else:
|
|
|
|
if api_key and api_key.strip():
|
|
openrouter_api_key = api_key
|
|
logging.info("OpenRouter: Using API key provided as parameter")
|
|
else:
|
|
|
|
openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
|
|
if openrouter_api_key:
|
|
logging.info("OpenRouter: Using API key from config file")
|
|
else:
|
|
logging.warning("OpenRouter: No API key found in config file")
|
|
|
|
|
|
logging.debug("OpenRouter: Validating model selection")
|
|
loaded_config_data = load_and_log_configs()
|
|
openrouter_model = loaded_config_data['models']['openrouter']
|
|
logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")
|
|
|
|
|
|
if not openrouter_api_key or not openrouter_api_key.strip():
|
|
logging.error("OpenRouter: No valid API key available")
|
|
raise ValueError("No valid Anthropic API key available")
|
|
except Exception as e:
|
|
logging.error("OpenRouter: Error in processing: %s", str(e))
|
|
return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"
|
|
|
|
logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")
|
|
|
|
logging.debug(f"OpenRouter: Using Model: {openrouter_model}")
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("OpenRouter: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("OpenRouter: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
|
|
logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
|
logging.debug(f"OpenRouter: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("OpenRouter: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("OpenRouter: Invalid input data format")
|
|
|
|
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
|
|
logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")
|
|
|
|
if temp is None:
|
|
temp = 0.1
|
|
temp = float(temp)
|
|
if system_message is None:
|
|
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
|
|
|
try:
|
|
logging.debug("OpenRouter: Submitting request to API endpoint")
|
|
print("OpenRouter: Submitting request to API endpoint")
|
|
response = requests.post(
|
|
url="https://openrouter.ai/api/v1/chat/completions",
|
|
headers={
|
|
"Authorization": f"Bearer {openrouter_api_key}",
|
|
},
|
|
data=json.dumps({
|
|
"model": openrouter_model,
|
|
"messages": [
|
|
{"role": "system", "content": system_message},
|
|
{"role": "user", "content": openrouter_prompt}
|
|
],
|
|
"temperature": temp
|
|
})
|
|
)
|
|
|
|
response_data = response.json()
|
|
logging.debug("API Response Data: %s", response_data)
|
|
|
|
if response.status_code == 200:
|
|
if 'choices' in response_data and len(response_data['choices']) > 0:
|
|
summary = response_data['choices'][0]['message']['content'].strip()
|
|
logging.debug("openrouter: Chat request successful")
|
|
print("openrouter: Chat request successful.")
|
|
return summary
|
|
else:
|
|
logging.error("openrouter: Expected data not found in API response.")
|
|
return "openrouter: Expected data not found in API response."
|
|
else:
|
|
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
|
|
return f"openrouter: API request failed: {response.text}"
|
|
except Exception as e:
|
|
logging.error("openrouter: Error in processing: %s", str(e))
|
|
return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"
|
|
|
|
|
|
|
|
def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None):
|
|
loaded_config_data = load_and_log_configs()
|
|
global huggingface_api_key
|
|
logging.debug(f"huggingface: Summarization process starting...")
|
|
try:
|
|
|
|
if api_key is None:
|
|
logging.info("HuggingFace: API key not provided as parameter")
|
|
logging.info("HuggingFace: Attempting to use API key from config file")
|
|
huggingface_api_key = loaded_config_data['api_keys']['openai']
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.error("HuggingFace: API key not found or is empty")
|
|
return "HuggingFace: API Key Not Provided/Found in Config file or is empty"
|
|
logging.debug(f"HuggingFace: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
|
headers = {
|
|
"Authorization": f"Bearer {api_key}"
|
|
}
|
|
|
|
|
|
huggingface_model = loaded_config_data['models']['huggingface']
|
|
|
|
API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}"
|
|
if system_prompt is not None:
|
|
logging.debug("HuggingFace: Using provided system prompt")
|
|
pass
|
|
else:
|
|
system_prompt = "You are a helpful assistant"
|
|
|
|
huggingface_prompt = f"{input_data}\n\n\n\n{custom_prompt_arg}"
|
|
logging.debug("huggingface: Prompt being sent is {huggingface_prompt}")
|
|
data = {
|
|
"inputs": f"{input_data}",
|
|
"parameters": {"max_length": 8192, "min_length": 100}
|
|
}
|
|
logging.debug("huggingface: Submitting request...")
|
|
|
|
response = requests.post(API_URL, headers=headers, json=data)
|
|
|
|
if response.status_code == 200:
|
|
summary = response.json()[0]['summary_text']
|
|
logging.debug("huggingface: Chat request successful")
|
|
print("Chat request successful.")
|
|
return summary
|
|
else:
|
|
logging.error(f"huggingface: Chat request failed with status code {response.status_code}: {response.text}")
|
|
return f"Failed to process chat request, status code {response.status_code}: {response.text}"
|
|
except Exception as e:
|
|
logging.error("huggingface: Error in processing: %s", str(e))
|
|
print(f"Error occurred while processing chat request with huggingface: {str(e)}")
|
|
return None
|
|
|
|
|
|
def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
|
logging.debug("DeepSeek: Summarization process starting...")
|
|
try:
|
|
logging.debug("DeepSeek: Loading and validating configurations")
|
|
loaded_config_data = load_and_log_configs()
|
|
if loaded_config_data is None:
|
|
logging.error("Failed to load configuration data")
|
|
deepseek_api_key = None
|
|
else:
|
|
|
|
if api_key and api_key.strip():
|
|
deepseek_api_key = api_key
|
|
logging.info("DeepSeek: Using API key provided as parameter")
|
|
else:
|
|
|
|
deepseek_api_key = loaded_config_data['api_keys'].get('deepseek')
|
|
if deepseek_api_key:
|
|
logging.info("DeepSeek: Using API key from config file")
|
|
else:
|
|
logging.warning("DeepSeek: No API key found in config file")
|
|
|
|
|
|
if not deepseek_api_key or not deepseek_api_key.strip():
|
|
logging.error("DeepSeek: No valid API key available")
|
|
|
|
|
|
|
|
|
|
logging.debug(f"DeepSeek: Using API Key: {deepseek_api_key[:5]}...{deepseek_api_key[-5:]}")
|
|
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("DeepSeek: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("DeepSeek: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
|
|
logging.debug(f"DeepSeek: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
|
logging.debug(f"DeepSeek: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("DeepSeek: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("DeepSeek: Invalid input data format")
|
|
|
|
deepseek_model = loaded_config_data['models']['deepseek'] or "deepseek-chat"
|
|
|
|
if temp is None:
|
|
temp = 0.1
|
|
temp = float(temp)
|
|
if system_message is None:
|
|
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
|
|
|
headers = {
|
|
'Authorization': f'Bearer {api_key}',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
logging.debug(
|
|
f"Deepseek API Key: {api_key[:5]}...{api_key[-5:] if api_key else None}")
|
|
logging.debug("DeepSeek: Preparing data + prompt for submittal")
|
|
deepseek_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
|
data = {
|
|
"model": deepseek_model,
|
|
"messages": [
|
|
{"role": "system", "content": system_message},
|
|
{"role": "user", "content": deepseek_prompt}
|
|
],
|
|
"stream": False,
|
|
"temperature": temp
|
|
}
|
|
|
|
logging.debug("DeepSeek: Posting request")
|
|
response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=data)
|
|
|
|
if response.status_code == 200:
|
|
response_data = response.json()
|
|
if 'choices' in response_data and len(response_data['choices']) > 0:
|
|
summary = response_data['choices'][0]['message']['content'].strip()
|
|
logging.debug("DeepSeek: Chat request successful")
|
|
return summary
|
|
else:
|
|
logging.warning("DeepSeek: Chat response not found in the response data")
|
|
return "DeepSeek: Chat response not available"
|
|
else:
|
|
logging.error(f"DeepSeek: Chat request failed with status code {response.status_code}")
|
|
logging.error(f"DeepSeek: Error response: {response.text}")
|
|
return f"DeepSeek: Failed to chat request summary. Status code: {response.status_code}"
|
|
except Exception as e:
|
|
logging.error(f"DeepSeek: Error in processing: {str(e)}", exc_info=True)
|
|
return f"DeepSeek: Error occurred while processing chat request: {str(e)}"
|
|
|
|
|
|
def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
|
logging.debug("Mistral: Chat request made")
|
|
try:
|
|
logging.debug("Mistral: Loading and validating configurations")
|
|
loaded_config_data = load_and_log_configs()
|
|
if loaded_config_data is None:
|
|
logging.error("Failed to load configuration data")
|
|
mistral_api_key = None
|
|
else:
|
|
|
|
if api_key and api_key.strip():
|
|
mistral_api_key = api_key
|
|
logging.info("Mistral: Using API key provided as parameter")
|
|
else:
|
|
|
|
mistral_api_key = loaded_config_data['api_keys'].get('mistral')
|
|
if mistral_api_key:
|
|
logging.info("Mistral: Using API key from config file")
|
|
else:
|
|
logging.warning("Mistral: No API key found in config file")
|
|
|
|
|
|
if not mistral_api_key or not mistral_api_key.strip():
|
|
logging.error("Mistral: No valid API key available")
|
|
return "Mistral: No valid API key available"
|
|
|
|
logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}")
|
|
|
|
logging.debug("Mistral: Using provided string data")
|
|
data = input_data
|
|
|
|
|
|
if isinstance(input_data, list):
|
|
text = extract_text_from_segments(input_data)
|
|
elif isinstance(input_data, str):
|
|
text = input_data
|
|
else:
|
|
raise ValueError("Mistral: Invalid input data format")
|
|
|
|
mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest")
|
|
|
|
temp = float(temp) if temp is not None else 0.2
|
|
if system_message is None:
|
|
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
|
|
|
headers = {
|
|
'Authorization': f'Bearer {mistral_api_key}',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
logging.debug(
|
|
f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
|
|
logging.debug("Mistral: Preparing data + prompt for submittal")
|
|
mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} "
|
|
data = {
|
|
"model": mistral_model,
|
|
"messages": [
|
|
{"role": "system",
|
|
"content": system_message},
|
|
{"role": "user",
|
|
"content": mistral_prompt}
|
|
],
|
|
"temperature": temp,
|
|
"top_p": 1,
|
|
"max_tokens": 4096,
|
|
"stream": False,
|
|
"safe_prompt": False
|
|
}
|
|
|
|
logging.debug("Mistral: Posting request")
|
|
response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data)
|
|
|
|
if response.status_code == 200:
|
|
response_data = response.json()
|
|
if 'choices' in response_data and len(response_data['choices']) > 0:
|
|
summary = response_data['choices'][0]['message']['content'].strip()
|
|
logging.debug("Mistral: request successful")
|
|
return summary
|
|
else:
|
|
logging.warning("Mistral: Chat response not found in the response data")
|
|
return "Mistral: Chat response not available"
|
|
else:
|
|
logging.error(f"Mistral: Chat request failed with status code {response.status_code}")
|
|
logging.error(f"Mistral: Error response: {response.text}")
|
|
return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}"
|
|
except Exception as e:
|
|
logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True)
|
|
return f"Mistral: Error occurred while processing Chat: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None):
|
|
loaded_config_data = load_and_log_configs()
|
|
llm_model = loaded_config_data['models']['vllm']
|
|
|
|
if api_key is None:
|
|
logging.info("vLLM: API key not provided as parameter")
|
|
logging.info("vLLM: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['llama']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("vLLM: API key not found or is empty")
|
|
vllm_client = OpenAI(
|
|
base_url=vllm_api_url,
|
|
api_key=custom_prompt_input
|
|
)
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("vLLM: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("vLLM: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"vLLM: Loaded data: {data}")
|
|
logging.debug(f"vLLM: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("vLLM: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Invalid input data format")
|
|
|
|
|
|
custom_prompt = custom_prompt_input
|
|
|
|
completion = client.chat.completions.create(
|
|
model=llm_model,
|
|
messages=[
|
|
{"role": "system", "content": f"{system_prompt}"},
|
|
{"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
|
|
]
|
|
)
|
|
vllm_summary = completion.choices[0].message.content
|
|
return vllm_summary
|
|
|
|
|
|
|
|
|
|
|
|
|