oceansweep's picture
Syncing latest changes, lets see what breaks
fa9a583 verified
raw
history blame
39.7 kB
# Summarization_General_Lib.py
#########################################
# General Summarization Library
# This library is used to perform summarization.
#
####
####################
# Function List
#
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
#
#
####################
#
# Import necessary libraries
import json
import logging
import os
import time
import requests
#
# Import 3rd-Party Libraries
from openai import OpenAI
from requests import RequestException
#
# Import Local libraries
from App_Function_Libraries.Local_Summarization_Lib import openai_api_key, client
from App_Function_Libraries.Utils import load_and_log_configs
#
#######################################################################################################################
# Function Definitions
#
#FIXME: Update to include full arguments
def extract_text_from_segments(segments):
logging.debug(f"Segments received: {segments}")
logging.debug(f"Type of segments: {type(segments)}")
text = ""
if isinstance(segments, list):
for segment in segments:
logging.debug(f"Current segment: {segment}")
logging.debug(f"Type of segment: {type(segment)}")
if 'Text' in segment:
text += segment['Text'] + " "
else:
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
else:
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
return text.strip()
def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None or api_key.strip() == "":
logging.info("OpenAI: #1 API key not provided as parameter")
logging.info("OpenAI: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['openai']
if api_key is None or api_key.strip() == "":
logging.error("OpenAI: #2 API key not found or is empty")
return "OpenAI: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
# Input data handling
logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
if isinstance(input_data, str):
if input_data.strip().startswith('{'):
# It's likely a JSON string
logging.debug("OpenAI: Parsing provided JSON string data for summarization")
try:
data = json.loads(input_data)
except json.JSONDecodeError as e:
logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
return f"OpenAI: Error parsing JSON input: {str(e)}"
elif os.path.isfile(input_data):
logging.debug("OpenAI: Loading JSON data from file for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("OpenAI: Using provided string data for summarization")
data = input_data
else:
data = input_data
logging.debug(f"OpenAI: Processed data type: {type(data)}")
logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")
# Text extraction
if isinstance(data, dict):
if 'summary' in data:
logging.debug("OpenAI: Summary already exists in the loaded data")
return data['summary']
elif 'segments' in data:
text = extract_text_from_segments(data['segments'])
else:
text = json.dumps(data) # Convert dict to string if no specific format
elif isinstance(data, list):
text = extract_text_from_segments(data)
elif isinstance(data, str):
text = data
else:
raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
logging.debug(f"OpenAI: Using model: {openai_model}")
headers = {
'Authorization': f'Bearer {openai_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
logging.debug("openai: Preparing data + prompt for submittal")
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
if temp is None:
temp = 0.7
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
temp = float(temp)
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openai_prompt}
],
"max_tokens": 4096,
"temperature": temp
}
logging.debug("OpenAI: Posting request")
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
chat_response = response_data['choices'][0]['message']['content'].strip()
logging.debug("openai: Chat Sent successfully")
return chat_response
else:
logging.warning("openai: Chat response not found in the response data")
return "openai: Chat not available"
else:
logging.error(f"OpenAI: Chat request failed with status code {response.status_code}")
logging.error(f"OpenAI: Error response: {response.text}")
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
except json.JSONDecodeError as e:
logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
return f"OpenAI: Error decoding JSON input: {str(e)}"
except requests.RequestException as e:
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
return f"OpenAI: Error making API request: {str(e)}"
except Exception as e:
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
return f"OpenAI: Unexpected error occurred: {str(e)}"
def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None):
try:
loaded_config_data = load_and_log_configs()
global anthropic_api_key
# API key validation
if api_key is None:
logging.info("Anthropic: API key not provided as parameter")
logging.info("Anthropic: Attempting to use API key from config file")
anthropic_api_key = loaded_config_data['api_keys']['anthropic']
if api_key is None or api_key.strip() == "":
logging.error("Anthropic: API key not found or is empty")
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")
if system_prompt is not None:
logging.debug("Anthropic: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
logging.debug(f"AnthropicAI: Loaded data: {input_data}")
logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")
anthropic_model = loaded_config_data['models']['anthropic']
headers = {
'x-api-key': anthropic_api_key,
'anthropic-version': '2023-06-01',
'Content-Type': 'application/json'
}
anthropic_user_prompt = custom_prompt_arg
logging.debug(f"Anthropic: User Prompt is {anthropic_user_prompt}")
user_message = {
"role": "user",
"content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
}
data = {
"model": model,
"max_tokens": 4096, # max _possible_ tokens to return
"messages": [user_message],
"stop_sequences": ["\n\nHuman:"],
"temperature": 0.1,
"top_k": 0,
"top_p": 1.0,
"metadata": {
"user_id": "example_user_id",
},
"stream": False,
"system": f"{system_prompt}"
}
for attempt in range(max_retries):
try:
logging.debug("anthropic: Posting request to API")
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
# Check if the status code indicates success
if response.status_code == 200:
logging.debug("anthropic: Post submittal successful")
response_data = response.json()
try:
chat_response = response_data['content'][0]['text'].strip()
logging.debug("anthropic: Chat request successful")
print("Chat request processed successfully.")
return chat_response
except (IndexError, KeyError) as e:
logging.debug("anthropic: Unexpected data in response")
print("Unexpected response format from Anthropic API:", response.text)
return None
elif response.status_code == 500: # Handle internal server error specifically
logging.debug("anthropic: Internal server error")
print("Internal server error from API. Retrying may be necessary.")
time.sleep(retry_delay)
else:
logging.debug(
f"anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
return None
except RequestException as e:
logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
if attempt < max_retries - 1:
time.sleep(retry_delay)
else:
return f"anthropic: Network error: {str(e)}"
except Exception as e:
logging.error(f"anthropic: Error in processing: {str(e)}")
return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
# Summarize with Cohere
def chat_with_cohere(api_key, input_data, model, custom_prompt_arg, system_prompt=None):
global cohere_api_key
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None:
logging.info("cohere: API key not provided as parameter")
logging.info("cohere: Attempting to use API key from config file")
cohere_api_key = loaded_config_data['api_keys']['cohere']
if api_key is None or api_key.strip() == "":
logging.error("cohere: API key not found or is empty")
return "cohere: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"cohere: Using API Key: {api_key[:5]}...{api_key[-5:]}")
logging.debug(f"Cohere: Loaded data: {input_data}")
logging.debug(f"Cohere: Type of data: {type(input_data)}")
cohere_model = loaded_config_data['models']['cohere']
headers = {
'accept': 'application/json',
'content-type': 'application/json',
'Authorization': f'Bearer {cohere_api_key}'
}
if system_prompt is not None:
logging.debug("Anthropic: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
cohere_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
logging.debug(f"cohere: User Prompt being sent is {cohere_prompt}")
logging.debug(f"cohere: System Prompt being sent is {system_prompt}")
data = {
"chat_history": [
{"role": "SYSTEM", "message": f"system_prompt"},
],
"message": f"{cohere_prompt}",
"model": model,
"connectors": [{"id": "web-search"}]
}
logging.debug("cohere: Submitting request to API endpoint")
print("cohere: Submitting request to API endpoint")
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'text' in response_data:
chat_response = response_data['text'].strip()
logging.debug("cohere: Chat request successful")
print("Chat request processed successfully.")
return chat_response
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
else:
logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}")
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
return f"cohere: API request failed: {response.text}"
except Exception as e:
logging.error("cohere: Error in processing: %s", str(e))
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"
# https://console.groq.com/docs/quickstart
def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("Groq: Summarization process starting...")
try:
logging.debug("Groq: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
groq_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
groq_api_key = api_key
logging.info("Groq: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
groq_api_key = loaded_config_data['api_keys'].get('groq')
if groq_api_key:
logging.info("Groq: Using API key from config file")
else:
logging.warning("Groq: No API key found in config file")
# Final check to ensure we have a valid API key
if not groq_api_key or not groq_api_key.strip():
logging.error("Anthropic: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
# For example: raise ValueError("No valid Anthropic API key available")
logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")
# Transcript data handling & Validation
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Groq: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Groq: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"Groq: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Groq: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Groq: Invalid input data format")
# Set the model to be used
groq_model = loaded_config_data['models']['groq']
if temp is None:
temp = 0.2
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {groq_api_key}',
'Content-Type': 'application/json'
}
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
logging.debug("groq: Prompt being sent is {groq_prompt}")
data = {
"messages": [
{
"role": "system",
"content": system_message,
},
{
"role": "user",
"content": groq_prompt,
}
],
"model": groq_model,
"temperature": temp
}
logging.debug("groq: Submitting request to API endpoint")
print("groq: Submitting request to API endpoint")
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("groq: Chat request successful")
print("Groq: Chat request successful.")
return summary
else:
logging.error("Groq(chat): Expected data not found in API response.")
return "Groq(chat): Expected data not found in API response."
else:
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
return f"groq: API request failed: {response.text}"
except Exception as e:
logging.error("groq: Error in processing: %s", str(e))
return f"groq: Error occurred while processing summary with groq: {str(e)}"
def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
import requests
import json
global openrouter_model, openrouter_api_key
try:
logging.debug("OpenRouter: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
openrouter_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
openrouter_api_key = api_key
logging.info("OpenRouter: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
if openrouter_api_key:
logging.info("OpenRouter: Using API key from config file")
else:
logging.warning("OpenRouter: No API key found in config file")
# Model Selection validation
logging.debug("OpenRouter: Validating model selection")
loaded_config_data = load_and_log_configs()
openrouter_model = loaded_config_data['models']['openrouter']
logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")
# Final check to ensure we have a valid API key
if not openrouter_api_key or not openrouter_api_key.strip():
logging.error("OpenRouter: No valid API key available")
raise ValueError("No valid Anthropic API key available")
except Exception as e:
logging.error("OpenRouter: Error in processing: %s", str(e))
return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"
logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")
logging.debug(f"OpenRouter: Using Model: {openrouter_model}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("OpenRouter: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("OpenRouter: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"OpenRouter: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("OpenRouter: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("OpenRouter: Invalid input data format")
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")
if temp is None:
temp = 0.1
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
try:
logging.debug("OpenRouter: Submitting request to API endpoint")
print("OpenRouter: Submitting request to API endpoint")
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {openrouter_api_key}",
},
data=json.dumps({
"model": openrouter_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openrouter_prompt}
],
"temperature": temp
})
)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("openrouter: Chat request successful")
print("openrouter: Chat request successful.")
return summary
else:
logging.error("openrouter: Expected data not found in API response.")
return "openrouter: Expected data not found in API response."
else:
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
return f"openrouter: API request failed: {response.text}"
except Exception as e:
logging.error("openrouter: Error in processing: %s", str(e))
return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"
# FIXME: This function is not yet implemented properly
def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None):
loaded_config_data = load_and_log_configs()
global huggingface_api_key
logging.debug(f"huggingface: Summarization process starting...")
try:
# API key validation
if api_key is None:
logging.info("HuggingFace: API key not provided as parameter")
logging.info("HuggingFace: Attempting to use API key from config file")
huggingface_api_key = loaded_config_data['api_keys']['openai']
if api_key is None or api_key.strip() == "":
logging.error("HuggingFace: API key not found or is empty")
return "HuggingFace: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"HuggingFace: Using API Key: {api_key[:5]}...{api_key[-5:]}")
headers = {
"Authorization": f"Bearer {api_key}"
}
# Setup model
huggingface_model = loaded_config_data['models']['huggingface']
API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}"
if system_prompt is not None:
logging.debug("HuggingFace: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
huggingface_prompt = f"{input_data}\n\n\n\n{custom_prompt_arg}"
logging.debug("huggingface: Prompt being sent is {huggingface_prompt}")
data = {
"inputs": f"{input_data}",
"parameters": {"max_length": 8192, "min_length": 100} # You can adjust max_length and min_length as needed
}
logging.debug("huggingface: Submitting request...")
response = requests.post(API_URL, headers=headers, json=data)
if response.status_code == 200:
summary = response.json()[0]['summary_text']
logging.debug("huggingface: Chat request successful")
print("Chat request successful.")
return summary
else:
logging.error(f"huggingface: Chat request failed with status code {response.status_code}: {response.text}")
return f"Failed to process chat request, status code {response.status_code}: {response.text}"
except Exception as e:
logging.error("huggingface: Error in processing: %s", str(e))
print(f"Error occurred while processing chat request with huggingface: {str(e)}")
return None
def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("DeepSeek: Summarization process starting...")
try:
logging.debug("DeepSeek: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
deepseek_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
deepseek_api_key = api_key
logging.info("DeepSeek: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
deepseek_api_key = loaded_config_data['api_keys'].get('deepseek')
if deepseek_api_key:
logging.info("DeepSeek: Using API key from config file")
else:
logging.warning("DeepSeek: No API key found in config file")
# Final check to ensure we have a valid API key
if not deepseek_api_key or not deepseek_api_key.strip():
logging.error("DeepSeek: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
# For example: raise ValueError("No valid deepseek API key available")
logging.debug(f"DeepSeek: Using API Key: {deepseek_api_key[:5]}...{deepseek_api_key[-5:]}")
# Input data handling
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("DeepSeek: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("DeepSeek: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"DeepSeek: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"DeepSeek: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("DeepSeek: Summary already exists in the loaded data")
return data['summary']
# Text extraction
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("DeepSeek: Invalid input data format")
deepseek_model = loaded_config_data['models']['deepseek'] or "deepseek-chat"
if temp is None:
temp = 0.1
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"Deepseek API Key: {api_key[:5]}...{api_key[-5:] if api_key else None}")
logging.debug("DeepSeek: Preparing data + prompt for submittal")
deepseek_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
data = {
"model": deepseek_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": deepseek_prompt}
],
"stream": False,
"temperature": temp
}
logging.debug("DeepSeek: Posting request")
response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("DeepSeek: Chat request successful")
return summary
else:
logging.warning("DeepSeek: Chat response not found in the response data")
return "DeepSeek: Chat response not available"
else:
logging.error(f"DeepSeek: Chat request failed with status code {response.status_code}")
logging.error(f"DeepSeek: Error response: {response.text}")
return f"DeepSeek: Failed to chat request summary. Status code: {response.status_code}"
except Exception as e:
logging.error(f"DeepSeek: Error in processing: {str(e)}", exc_info=True)
return f"DeepSeek: Error occurred while processing chat request: {str(e)}"
def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("Mistral: Chat request made")
try:
logging.debug("Mistral: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
mistral_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
mistral_api_key = api_key
logging.info("Mistral: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
mistral_api_key = loaded_config_data['api_keys'].get('mistral')
if mistral_api_key:
logging.info("Mistral: Using API key from config file")
else:
logging.warning("Mistral: No API key found in config file")
# Final check to ensure we have a valid API key
if not mistral_api_key or not mistral_api_key.strip():
logging.error("Mistral: No valid API key available")
return "Mistral: No valid API key available"
logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}")
logging.debug("Mistral: Using provided string data")
data = input_data
# Text extraction
if isinstance(input_data, list):
text = extract_text_from_segments(input_data)
elif isinstance(input_data, str):
text = input_data
else:
raise ValueError("Mistral: Invalid input data format")
mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest")
temp = float(temp) if temp is not None else 0.2
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {mistral_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
logging.debug("Mistral: Preparing data + prompt for submittal")
mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} "
data = {
"model": mistral_model,
"messages": [
{"role": "system",
"content": system_message},
{"role": "user",
"content": mistral_prompt}
],
"temperature": temp,
"top_p": 1,
"max_tokens": 4096,
"stream": False,
"safe_prompt": False
}
logging.debug("Mistral: Posting request")
response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("Mistral: request successful")
return summary
else:
logging.warning("Mistral: Chat response not found in the response data")
return "Mistral: Chat response not available"
else:
logging.error(f"Mistral: Chat request failed with status code {response.status_code}")
logging.error(f"Mistral: Error response: {response.text}")
return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}"
except Exception as e:
logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True)
return f"Mistral: Error occurred while processing Chat: {str(e)}"
# Stashed in here since OpenAI usage.... #FIXME
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None):
loaded_config_data = load_and_log_configs()
llm_model = loaded_config_data['models']['vllm']
# API key validation
if api_key is None:
logging.info("vLLM: API key not provided as parameter")
logging.info("vLLM: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['llama']
if api_key is None or api_key.strip() == "":
logging.info("vLLM: API key not found or is empty")
vllm_client = OpenAI(
base_url=vllm_api_url,
api_key=custom_prompt_input
)
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("vLLM: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("vLLM: Using provided string data for summarization")
data = input_data
logging.debug(f"vLLM: Loaded data: {data}")
logging.debug(f"vLLM: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("vLLM: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
custom_prompt = custom_prompt_input
completion = client.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": f"{system_prompt}"},
{"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
]
)
vllm_summary = completion.choices[0].message.content
return vllm_summary
#
#
#######################################################################################################################