oceansweep
commited on
Delete App_Function_Libraries/RAG/RAG_Libary_2.py
Browse files
App_Function_Libraries/RAG/RAG_Libary_2.py
DELETED
@@ -1,172 +0,0 @@
|
|
1 |
-
# RAG_Library_2.py
|
2 |
-
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
|
3 |
-
#
|
4 |
-
# Import necessary modules and functions
|
5 |
-
import configparser
|
6 |
-
from typing import Dict, Any
|
7 |
-
# Local Imports
|
8 |
-
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
|
9 |
-
from App_Function_Libraries.Article_Extractor_Lib import scrape_article
|
10 |
-
from App_Function_Libraries.DB.DB_Manager import add_media_to_database, search_db, get_unprocessed_media
|
11 |
-
# 3rd-Party Imports
|
12 |
-
import openai
|
13 |
-
#
|
14 |
-
########################################################################################################################
|
15 |
-
#
|
16 |
-
# Functions:
|
17 |
-
|
18 |
-
# Initialize OpenAI client (adjust this based on your API key management)
|
19 |
-
openai.api_key = "your-openai-api-key"
|
20 |
-
|
21 |
-
config = configparser.ConfigParser()
|
22 |
-
config.read('config.txt')
|
23 |
-
|
24 |
-
# Main RAG pipeline function
|
25 |
-
def rag_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
|
26 |
-
# Extract content
|
27 |
-
article_data = scrape_article(url)
|
28 |
-
content = article_data['content']
|
29 |
-
title = article_data['title']
|
30 |
-
|
31 |
-
# Store the article in the database and get the media_id
|
32 |
-
media_id = add_media_to_database(url, title, 'article', content)
|
33 |
-
|
34 |
-
# Process and store content
|
35 |
-
collection_name = f"article_{media_id}"
|
36 |
-
process_and_store_content(content, collection_name, media_id)
|
37 |
-
|
38 |
-
# Perform searches
|
39 |
-
vector_results = vector_search(collection_name, query, k=5)
|
40 |
-
fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
|
41 |
-
|
42 |
-
# Combine results
|
43 |
-
all_results = vector_results + [result['content'] for result in fts_results]
|
44 |
-
context = "\n".join(all_results)
|
45 |
-
|
46 |
-
# Generate answer using the selected API
|
47 |
-
answer = generate_answer(api_choice, context, query)
|
48 |
-
|
49 |
-
return {
|
50 |
-
"answer": answer,
|
51 |
-
"context": context
|
52 |
-
}
|
53 |
-
|
54 |
-
|
55 |
-
def generate_answer(api_choice: str, context: str, query: str) -> str:
|
56 |
-
prompt = f"Context: {context}\n\nQuestion: {query}"
|
57 |
-
if api_choice == "OpenAI":
|
58 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai
|
59 |
-
return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
|
60 |
-
elif api_choice == "Anthropic":
|
61 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_anthropic
|
62 |
-
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
|
63 |
-
elif api_choice == "Cohere":
|
64 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_cohere
|
65 |
-
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
|
66 |
-
elif api_choice == "Groq":
|
67 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_groq
|
68 |
-
return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
|
69 |
-
elif api_choice == "OpenRouter":
|
70 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openrouter
|
71 |
-
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
|
72 |
-
elif api_choice == "HuggingFace":
|
73 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_huggingface
|
74 |
-
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
|
75 |
-
elif api_choice == "DeepSeek":
|
76 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_deepseek
|
77 |
-
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
|
78 |
-
elif api_choice == "Mistral":
|
79 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_mistral
|
80 |
-
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
|
81 |
-
elif api_choice == "Local-LLM":
|
82 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_local_llm
|
83 |
-
return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "")
|
84 |
-
elif api_choice == "Llama.cpp":
|
85 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama
|
86 |
-
return summarize_with_llama(config['API']['llama_api_key'], prompt, "")
|
87 |
-
elif api_choice == "Kobold":
|
88 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_kobold
|
89 |
-
return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "")
|
90 |
-
elif api_choice == "Ooba":
|
91 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_oobabooga
|
92 |
-
return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "")
|
93 |
-
elif api_choice == "TabbyAPI":
|
94 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_tabbyapi
|
95 |
-
return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "")
|
96 |
-
elif api_choice == "vLLM":
|
97 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_vllm
|
98 |
-
return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "")
|
99 |
-
elif api_choice == "ollama":
|
100 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_ollama
|
101 |
-
return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "")
|
102 |
-
else:
|
103 |
-
raise ValueError(f"Unsupported API choice: {api_choice}")
|
104 |
-
|
105 |
-
# Function to preprocess and store all existing content in the database
|
106 |
-
def preprocess_all_content():
|
107 |
-
unprocessed_media = get_unprocessed_media()
|
108 |
-
for row in unprocessed_media:
|
109 |
-
media_id = row[0]
|
110 |
-
content = row[1]
|
111 |
-
media_type = row[2]
|
112 |
-
collection_name = f"{media_type}_{media_id}"
|
113 |
-
process_and_store_content(content, collection_name, media_id)
|
114 |
-
|
115 |
-
|
116 |
-
# Function to perform RAG search across all stored content
|
117 |
-
def rag_search(query: str, api_choice: str) -> Dict[str, Any]:
|
118 |
-
# Perform vector search across all collections
|
119 |
-
all_collections = chroma_client.list_collections()
|
120 |
-
vector_results = []
|
121 |
-
for collection in all_collections:
|
122 |
-
vector_results.extend(vector_search(collection.name, query, k=2))
|
123 |
-
|
124 |
-
# Perform FTS search
|
125 |
-
fts_results = search_db(query, ["content"], "", page=1, results_per_page=10)
|
126 |
-
|
127 |
-
# Combine results
|
128 |
-
all_results = vector_results + [result['content'] for result in fts_results]
|
129 |
-
context = "\n".join(all_results[:10]) # Limit to top 10 results
|
130 |
-
|
131 |
-
# Generate answer using the selected API
|
132 |
-
answer = generate_answer(api_choice, context, query)
|
133 |
-
|
134 |
-
return {
|
135 |
-
"answer": answer,
|
136 |
-
"context": context
|
137 |
-
}
|
138 |
-
|
139 |
-
|
140 |
-
# Example usage:
|
141 |
-
# 1. Initialize the system:
|
142 |
-
# create_tables(db) # Ensure FTS tables are set up
|
143 |
-
#
|
144 |
-
# 2. Create ChromaDB
|
145 |
-
# chroma_client = ChromaDBClient()
|
146 |
-
#
|
147 |
-
# 3. Create Embeddings
|
148 |
-
# Store embeddings in ChromaDB
|
149 |
-
# preprocess_all_content() or create_embeddings()
|
150 |
-
#
|
151 |
-
# 4. Perform RAG search across all content:
|
152 |
-
# result = rag_search("What are the key points about climate change?")
|
153 |
-
# print(result['answer'])
|
154 |
-
#
|
155 |
-
# (Extra)5. Perform RAG on a specific URL:
|
156 |
-
# result = rag_pipeline("https://example.com/article", "What is the main topic of this article?")
|
157 |
-
# print(result['answer'])
|
158 |
-
#
|
159 |
-
########################################################################################################################
|
160 |
-
|
161 |
-
|
162 |
-
############################################################################################################
|
163 |
-
#
|
164 |
-
# ElasticSearch Retriever
|
165 |
-
|
166 |
-
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
|
167 |
-
#
|
168 |
-
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
|
169 |
-
|
170 |
-
#
|
171 |
-
# End of RAG_Library_2.py
|
172 |
-
############################################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|