File size: 6,021 Bytes
d6038e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr
from src.llm import query_chroma
from src.reranker_warm import rank_anime_warm
import pandas as pd
from pathlib import Path
import requests

css = """
footer {display: none !important}
.gradio-container {
    max-width: 1200px;
    margin: auto;
}
.contain {
    background: rgba(255, 255, 255, 0.05);
    border-radius: 12px;
    padding: 20px;
}
.submit-btn {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
    border: none !important;
    color: white !important;
}
.submit-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
    text-align: center;
    font-size: 2.5em;
    font-weight: bold;
    margin-bottom: 1em;
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
}
.output-image {
    width: 100% !important;
    max-width: 100% !important;
}
"""


def download_pic(names: list[str]):
    df = pd.read_csv(str(Path(Path(__file__).parent, "src/data/final_anime_list.csv")))
    pic_dir = Path(Path(__file__).parent, "src/data/pics")

    if not pic_dir.exists():
        pic_dir.mkdir(exist_ok=True)

    df = df[df.Name.isin(names)]
    df = df[["Name", "Image URL", "Synopsis"]].set_index("Name").reindex(names)
    synopsis_list = df['Synopsis'].tolist()
    file_paths = []
    for url in df["Image URL"]:
        file_name = "_".join(url.split("/")[-2:])
        file_path = Path(pic_dir, file_name)

        if file_path.exists():
            file_paths.append(str(file_path))
            continue

        response = requests.get(url)
        response.raise_for_status()  # Raise an exception for bad status codes

        with open(Path(pic_dir, file_name), 'wb') as file:
            file.write(response.content)
        file_paths.append(str(file_path))

        print(f"Image downloaded successfully: {url}")
    return file_paths, synopsis_list
    # return url


def integration_warm(query: str):
    anime_name_list = query_chroma(query=query, anime_count=100)

    # you need to have the following datasets in src/data/ to call this function
    # 1. warm_rerank_data.csv
    # 2. user_similarities.csv
    # we saved the intermediate matrix for calculation efficiency
    anime_name_list = rank_anime_warm(userid=12, anime_list=anime_name_list)[:4]
    final_names = [x[0] for x in anime_name_list]

    anime_pic_list, synopsis_list = download_pic(list(final_names))

    return [*anime_name_list, *anime_pic_list, *synopsis_list]




def clear_prompt():
    """Function to clear the prompt box."""
    return ""


def feedback_button(action, anime_name):
    # Store or log feedback (can be expanded to save in a database)
    return f"You {action}d {anime_name}!"


with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.HTML('<div class="title">AniQuest</div>')
    gr.HTML(
        '<div style="text-align: center; margin-bottom: 2em; color: #666; font-size: 24px;">We recommendate animes based on your description</div>')
    gr.HTML("""
                <div style="color: red; margin-bottom: 1em; text-align: center; padding: 10px; background: rgba(255,0,0,0.1); border-radius: 8px;">
                    ⚠️ Welcome, [user_id: 12] to this recommendation system ⚠️
                </div>
            """)

    with gr.Column():
        prompt = gr.Textbox(
            label="Query",
            placeholder="Describe the anime you want to watch next ...",
            lines=1
        )
        with gr.Row():
            generate_btn = gr.Button(
                "πŸ™† Submit",
                elem_classes=["submit-btn"]
            )
            clear_btn = gr.Button(
                "πŸ™… Clear",
                elem_classes=["submit-btn"]
            )
    with gr.Row():
        for i in range(4):

            anime_names = []  # Store references to the anime name components
            feedback_texts = []  # List to store feedback components

            with gr.Column(scale=1, elem_classes=["anime-block"]):

                exec(f"anime{i + 1} = gr.Textbox(label='Anime {i + 1}')")

                with gr.Row():  # Add Like and Dislike buttons under each anime name
                    like_btn = gr.Button("πŸ‘ Like")
                    dislike_btn = gr.Button("πŸ‘Ž Dislike")

                exec(f"image{i + 1} = gr.Image(label='Image', elem_classes=['output-image', 'fixed-width'])")
                exec(
                    f"description{i + 1} = gr.HTML('<div class=\"anime-description\" style=\"margin-top: 10px; font-size: 14px; color: #666;\">Description for anime {i + 1}</div>')")

                # anime_names.append(anime_name)  # Store the reference to use in the button's click method

                # feedback_text = gr.Textbox(
                #     label="Feedback",
                #     interactive=False,
                #     visible=False  # Hidden initially; becomes visible after feedback
                # )
                # feedback_texts.append(feedback_text)

                # Link Like and Dislike buttons to feedback function
                # like_btn.click(fn=feedback_button, inputs=["Like", anime_name], outputs=feedback_text)
                # dislike_btn.click(fn=feedback_button, inputs=["Dislike", anime_name], outputs=feedback_text)

    generate_btn.click(
        fn=integration_warm,
        inputs=[prompt],
        outputs=[anime1, anime2, anime3, anime4, image1, image2, image3, image4, description1, description2, description3, description4, ]
    )
    # Link the "Clear" button to the clear function to clear the prompt
    clear_btn.click(
        fn=clear_prompt,  # The function to call
        inputs=[],  # No input required
        outputs=[prompt]  # Clears the prompt
    )




if __name__ == "__main__":
    # integration_warm(query='I want something like Demon Slayer, but with more romance and produced by Kyoto Animation')
    # warm user
    demo.launch(server_name="0.0.0.0", server_port=7860)