jcarnero's picture
Updated deployment
3f9971c
import torch
import gradio as gr
from PIL import Image
from model import get_model, apply_weights, copy_weight
from vocab import vocab
from transforms import resized_crop_pad, gpu_crop
from torchvision.transforms import Normalize, ToTensor
model = get_model()
state = torch.load("./vit_saved.pth", map_location="cpu")
apply_weights(model, state, copy_weight)
to_tensor = ToTensor()
norm = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def decode_pred(pred: torch.Tensor) -> str:
indices = pred > 0.95
if indices.any():
# return first match
return vocab[indices.nonzero()[0]]
else:
return "I don't know what this is, ¡páharo!"
def classify_image(inp):
inp = Image.fromarray(inp)
transformed_input = resized_crop_pad(inp, (460, 460))
transformed_input = to_tensor(transformed_input).unsqueeze(0)
transformed_input = gpu_crop(transformed_input, (224, 224))
transformed_input = norm(transformed_input)
model.eval()
with torch.no_grad():
pred = model(transformed_input)
return decode_pred(torch.sigmoid(pred).squeeze(dim=0))
iface = gr.Interface(
fn=classify_image,
inputs=gr.inputs.Image(),
outputs="text",
title="Birds Classifier without Fastai",
description="A birds classifier over 200 species trained with Fastai"
" and deployed with plain pytorch in Gradio.",
).launch()