Jingkang Yang
update app
c48c100
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
import os
os.system('pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html')
try:
import detectron2
except:
import os
# os.system('cd /home/user/app/third_party/CLIP && pip install -Ue .')
os.system('pip install git+https://github.com/Jun-CEN/CLIP.git')
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git')
os.system('pip install git+https://github.com/facebookresearch/segment-anything.git')
import argparse
import glob
import multiprocessing as mp
import os
import time
import cv2
import tqdm
import numpy as np
import gradio as gr
from tools.util import *
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
from open_vocab_seg import add_ovseg_config
from open_vocab_seg.utils import VisualizationDemo, VisualizationDemoIndoor
# constants
WINDOW_NAME = "Open vocabulary segmentation"
def setup_cfg(args):
# load config from file and command-line arguments
cfg = get_cfg()
# for poly lr schedule
add_deeplab_config(cfg)
add_ovseg_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def get_parser():
parser = argparse.ArgumentParser(description="Detectron2 demo for open vocabulary segmentation")
parser.add_argument(
"--config-file",
default="configs/ovseg_swinB_vitL_demo.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--input",
default=["/mnt/lustre/jkyang/PSG4D/sailvos3d/downloads/sailvos3d/trevor_1_int/images/000160.bmp"],
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--class-names",
default=["person", "car", "motorcycle", "truck", "bird", "dog", "handbag", "suitcase", "bottle", "cup", "bowl", "chair", "potted plant", "bed", "dining table", "tv", "laptop", "cell phone", "bag", "bin", "box", "door", "road barrier", "stick", "lamp", "floor", "wall"],
nargs="+",
help="A list of user-defined class_names"
)
parser.add_argument(
"--output",
default = "./pred",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=["MODEL.WEIGHTS", "ovseg_swinbase_vitL14_ft_mpt.pth"],
nargs=argparse.REMAINDER,
)
return parser
args = get_parser().parse_args()
def greet_sailvos3d(rgb_input, depth_map_input, rage_matrices_input, class_candidates):
print(args.class_names)
print(class_candidates[0], class_candidates[1], class_candidates[2], class_candidates[3],)
print(class_candidates.split(', '))
args.input = [rgb_input]
args.class_names = class_candidates.split(', ')
depth_map_path = depth_map_input.name
rage_matrices_path = rage_matrices_input.name
print(args.input, args.class_names, depth_map_path, rage_matrices_path)
mp.set_start_method("spawn", force=True)
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
demo = VisualizationDemo(cfg)
class_names = args.class_names
print(args.input)
if args.input:
if len(args.input) == 1:
args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found"
for path in tqdm.tqdm(args.input, disable=not args.output):
# use PIL, to be consistent with evaluation
start_time = time.time()
predictions, visualized_output_rgb, visualized_output_depth, visualized_output_rgb_sam, visualized_output_depth_sam = demo.run_on_image_sam(path, class_names, depth_map_path, rage_matrices_path)
logger.info(
"{}: {} in {:.2f}s".format(
path,
"detected {} instances".format(len(predictions["instances"]))
if "instances" in predictions
else "finished",
time.time() - start_time,
)
)
if args.output:
if os.path.isdir(args.output):
assert os.path.isdir(args.output), args.output
out_filename = os.path.join(args.output, os.path.basename(path))
else:
assert len(args.input) == 1, "Please specify a directory with args.output"
out_filename = args.output
visualized_output_rgb.save('outputs/RGB_Semantic_SAM.png')
visualized_output_depth.save('outputs/Depth_Semantic_SAM.png')
visualized_output_rgb_sam.save('outputs/RGB_Semantic_SAM_Mask.png')
visualized_output_depth_sam.save('outputs/Depth_Semantic_SAM_Mask.png')
rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', depth_map_path, rage_matrices_path)
depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', depth_map_path, rage_matrices_path)
rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
depth_3d_sam_mask = demo.get_xyzrgb('outputs/Depth_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sam, depth_3d_sam = depth_3d_sam, rgb_3d_sam_mask = rgb_3d_sam_mask, depth_3d_sam_mask = depth_3d_sam_mask)
demo.render_3d_video('outputs/xyzrgb.npz', depth_map_path)
else:
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.imshow(WINDOW_NAME, visualized_output_rgb.get_image()[:, :, ::-1])
if cv2.waitKey(0) == 27:
break # esc to quit
else:
raise NotImplementedError
Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png')
RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png')
Depth_Semantic_SAM = read_image('outputs/Depth_Semantic_SAM.png')
RGB_Semantic_SAM = read_image('outputs/RGB_Semantic_SAM.png')
two_image_to_gif(Depth_Semantic_SAM_Mask, Depth_Semantic_SAM, 'Depth_Semantic_SAM_2D')
two_image_to_gif(RGB_Semantic_SAM_Mask, RGB_Semantic_SAM, 'RGB_Semantic_SAM_2D')
Depth_Semantic_SAM_2D = 'outputs/Depth_Semantic_SAM_2D.mp4'
RGB_Semantic_SAM_2D = 'outputs/RGB_Semantic_SAM_2D.mp4'
Depth_map = read_image('outputs/Depth_rendered.png')
Depth_Semantic_SAM_Mask_gif = 'outputs/Depth_3D_All.mp4'
RGB_Semantic_SAM_Mask_gif = 'outputs/RGB_3D_All.mp4'
return RGB_Semantic_SAM_2D, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_2D, Depth_Semantic_SAM_Mask_gif
def greet_scannet(rgb_input, depth_map_input, class_candidates):
rgb_input = rgb_input
depth_map_input = depth_map_input.name
class_candidates = class_candidates.split(', ')
print(rgb_input, depth_map_input, class_candidates)
mp.set_start_method("spawn", force=True)
args = get_parser().parse_args()
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
demo = VisualizationDemoIndoor(cfg)
""" args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found" """
start_time = time.time()
predictions, output2D, output3D = demo.run_on_pcd_ui(rgb_input, depth_map_input, class_candidates)
output2D['sem_seg_on_rgb'].save('outputs/RGB_Semantic_SAM.png')
output2D['sem_seg_on_depth'].save('outputs/Depth_Semantic_SAM.png')
output2D['sam_seg_on_rgb'].save('outputs/RGB_Semantic_SAM_Mask.png')
output2D['sam_seg_on_depth'].save('outputs/Depth_Semantic_SAM_Mask.png')
""" rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', path)
depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', path)
rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', path)
depth_3d_sam_mask = demo.get_xyzrgb(outputs/'Depth_Semantic_SAM_Mask.png', path) """
rgb_3d_sem = output3D['rgb_3d_sem']
depth_3d_sem = output3D['depth_3d_sem']
rgb_3d_sam = output3D['rgb_3d_sam']
depth_3d_sam = output3D['depth_3d_sam']
np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sem, depth_3d_sam = depth_3d_sem, rgb_3d_sam_mask = rgb_3d_sam, depth_3d_sam_mask = depth_3d_sam)
demo.render_3d_video('outputs/xyzrgb.npz')
Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png')
RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png')
Depth_Semantic_SAM = read_image('outputs/Depth_Semantic_SAM.png')
RGB_Semantic_SAM = read_image('outputs/RGB_Semantic_SAM.png')
two_image_to_gif(Depth_Semantic_SAM_Mask, Depth_Semantic_SAM, 'Depth_Semantic_SAM_2D')
two_image_to_gif(RGB_Semantic_SAM_Mask, RGB_Semantic_SAM, 'RGB_Semantic_SAM_2D')
Depth_Semantic_SAM_2D = 'outputs/Depth_Semantic_SAM_2D.mp4'
RGB_Semantic_SAM_2D = 'outputs/RGB_Semantic_SAM_2D.mp4'
Depth_map = read_image('outputs/Depth_rendered.png')
Depth_Semantic_SAM_Mask_gif = 'outputs/Depth_3D_All.mp4'
RGB_Semantic_SAM_Mask_gif = 'outputs/RGB_3D_All.mp4'
return RGB_Semantic_SAM_2D, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_2D, Depth_Semantic_SAM_Mask_gif
with gr.Blocks(analytics_enabled=False) as segrgbd_iface:
gr.Markdown("<div align='center'> <h2> Segment Any RGBD </span> </h2> \
<a style='font-size:18px;color: #000000' href='https://github.com/Jun-CEN/SegmentAnyRGBD'> Github </div>")
gr.Markdown("<b> Note that you need a GPU for this project. You may duplicate the space and upgrade to GPU in settings for better performance and faster inference without waiting in the queue. <a style='display:inline-block' href='https://huggingface.co/spaces/jcenaa/Semantic_Segment_AnyRGBD?duplicate=true'> <img src='https://bit.ly/3gLdBN6' alt='Duplicate Space'></a> </b>")
#######t2v#######
with gr.Tab(label="Dataset: Sailvos3D"):
with gr.Column():
with gr.Row():
# with gr.Tab(label='input'):
with gr.Column():
with gr.Row():
Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200)
Depth_Map_Output_Component = gr.Image(label = "Vis_Depth_Map").style(width=320, height=200)
with gr.Row():
Depth_Map_Input_Component = gr.File(label = 'input_Depth_map')
Component_2D_to_3D_Projection_Parameters = gr.File(label = '2D_to_3D_Projection_Parameters')
with gr.Row():
Class_Candidates_Component = gr.Text(label = 'Class_Candidates')
vc_end_btn = gr.Button("Send")
with gr.Tab(label='Result'):
with gr.Row():
RGB_Semantic_SAM_Mask_Component = gr.Video(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200)
RGB_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_RGB_Semantic_SAM_Mask").style(width=320, height=200)
with gr.Row():
Depth_Semantic_SAM_Mask_Component = gr.Video(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200)
Depth_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_Depth_Semantic_SAM_Mask").style(width=320, height=200)
with gr.Row():
gr.Markdown("<b> It takes around 2 to 5 minutes to get the final results. The framework initialization, SAM segmentation, zero-shot semantic segmentation and 3D results rendering take long time.</b>")
gr.Examples(examples=[
[
'UI/sailvos3d/ex1/inputs/rgb_000160.bmp',
'UI/sailvos3d/ex1/inputs/depth_000160.npy',
'UI/sailvos3d/ex1/inputs/rage_matrices_000160.npz',
'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
],
[
'UI/sailvos3d/ex2/inputs/rgb_000540.bmp',
'UI/sailvos3d/ex2/inputs/depth_000540.npy',
'UI/sailvos3d/ex2/inputs/rage_matrices_000540.npz',
'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
]],
inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet_sailvos3d)
vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet_sailvos3d)
with gr.Tab(label="Dataset: Scannet"):
with gr.Column():
with gr.Row():
# with gr.Tab(label='input'):
with gr.Column():
with gr.Row():
Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200)
Depth_Map_Output_Component = gr.Image(label = "Vis_Depth_Map").style(width=320, height=200)
with gr.Row():
Depth_Map_Input_Component = gr.File(label = "Input_Depth_Map")
Class_Candidates_Component = gr.Text(label = 'Class_Candidates')
vc_end_btn = gr.Button("Send")
with gr.Tab(label='Result'):
with gr.Row():
RGB_Semantic_SAM_Mask_Component = gr.Video(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200)
RGB_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_RGB_Semantic_SAM_Mask").style(width=320, height=200)
with gr.Row():
Depth_Semantic_SAM_Mask_Component = gr.Video(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200)
Depth_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_Depth_Semantic_SAM_Mask").style(width=320, height=200)
with gr.Row():
gr.Markdown("<b> It takes around 2 to 5 minutes to get the final results. The framework initialization, SAM segmentation, zero-shot semantic segmentation and 3D results rendering take long time.</b>")
gr.Examples(examples=[
[
'UI/scannetv2/examples/scene0000_00/color/1660.jpg',
'UI/scannetv2/examples/scene0000_00/depth/1660.png',
'wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink, bathtub, other furniture',
],
[
'UI/scannetv2/examples/scene0000_00/color/5560.jpg',
'UI/scannetv2/examples/scene0000_00/depth/5560.png',
'wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink, bathtub, other furniture',
]],
inputs=[Input_RGB_Component, Depth_Map_Input_Component, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet_scannet)
vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet_scannet)
demo = segrgbd_iface
demo.launch()