Spaces:
Runtime error
Runtime error
Jingkang Yang
commited on
Commit
·
09ed94e
1
Parent(s):
75a2e8a
update: clip
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ try:
|
|
5 |
except:
|
6 |
import os
|
7 |
# os.system('cd /home/user/app/third_party/CLIP && pip install -Ue .')
|
8 |
-
|
9 |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
10 |
os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git')
|
11 |
os.system('pip install git+https://github.com/facebookresearch/segment-anything.git')
|
|
|
5 |
except:
|
6 |
import os
|
7 |
# os.system('cd /home/user/app/third_party/CLIP && pip install -Ue .')
|
8 |
+
os.system('pip install git+https://github.com/Jun-CEN/CLIP.git')
|
9 |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
10 |
os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git')
|
11 |
os.system('pip install git+https://github.com/facebookresearch/segment-anything.git')
|
open_vocab_seg/modeling/clip_adapter/bpe_simple_vocab_16e6.txt.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
-
size 1356917
|
|
|
|
|
|
|
|
open_vocab_seg/modeling/clip_adapter/clip.py
DELETED
@@ -1,285 +0,0 @@
|
|
1 |
-
import hashlib
|
2 |
-
import os
|
3 |
-
import urllib
|
4 |
-
import warnings
|
5 |
-
from collections import OrderedDict
|
6 |
-
from typing import Union, List
|
7 |
-
|
8 |
-
import torch
|
9 |
-
from PIL import Image
|
10 |
-
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
11 |
-
from tqdm import tqdm
|
12 |
-
|
13 |
-
from .model import build_model
|
14 |
-
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
15 |
-
|
16 |
-
try:
|
17 |
-
from torchvision.transforms import InterpolationMode
|
18 |
-
|
19 |
-
BICUBIC = InterpolationMode.BICUBIC
|
20 |
-
except ImportError:
|
21 |
-
BICUBIC = Image.BICUBIC
|
22 |
-
|
23 |
-
|
24 |
-
if torch.__version__.split(".") < ["1", "7", "1"]:
|
25 |
-
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
26 |
-
|
27 |
-
|
28 |
-
__all__ = ["available_models", "load", "tokenize"]
|
29 |
-
_tokenizer = _Tokenizer()
|
30 |
-
|
31 |
-
_MODELS = {
|
32 |
-
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
33 |
-
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
34 |
-
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
35 |
-
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
36 |
-
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
37 |
-
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
38 |
-
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
39 |
-
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
40 |
-
}
|
41 |
-
|
42 |
-
|
43 |
-
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
|
44 |
-
os.makedirs(root, exist_ok=True)
|
45 |
-
filename = os.path.basename(url)
|
46 |
-
|
47 |
-
expected_sha256 = url.split("/")[-2]
|
48 |
-
download_target = os.path.join(root, filename)
|
49 |
-
|
50 |
-
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
51 |
-
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
52 |
-
|
53 |
-
if os.path.isfile(download_target):
|
54 |
-
if (
|
55 |
-
hashlib.sha256(open(download_target, "rb").read()).hexdigest()
|
56 |
-
== expected_sha256
|
57 |
-
):
|
58 |
-
return download_target
|
59 |
-
else:
|
60 |
-
warnings.warn(
|
61 |
-
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
|
62 |
-
)
|
63 |
-
|
64 |
-
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
65 |
-
with tqdm(
|
66 |
-
total=int(source.info().get("Content-Length")),
|
67 |
-
ncols=80,
|
68 |
-
unit="iB",
|
69 |
-
unit_scale=True,
|
70 |
-
) as loop:
|
71 |
-
while True:
|
72 |
-
buffer = source.read(8192)
|
73 |
-
if not buffer:
|
74 |
-
break
|
75 |
-
|
76 |
-
output.write(buffer)
|
77 |
-
loop.update(len(buffer))
|
78 |
-
|
79 |
-
if (
|
80 |
-
hashlib.sha256(open(download_target, "rb").read()).hexdigest()
|
81 |
-
!= expected_sha256
|
82 |
-
):
|
83 |
-
raise RuntimeError(
|
84 |
-
f"Model has been downloaded but the SHA256 checksum does not not match"
|
85 |
-
)
|
86 |
-
|
87 |
-
return download_target
|
88 |
-
|
89 |
-
|
90 |
-
def _transform(n_px):
|
91 |
-
return Compose(
|
92 |
-
[
|
93 |
-
Resize(n_px, interpolation=BICUBIC),
|
94 |
-
CenterCrop(n_px),
|
95 |
-
lambda image: image.convert("RGB"),
|
96 |
-
ToTensor(),
|
97 |
-
Normalize(
|
98 |
-
(0.48145466, 0.4578275, 0.40821073),
|
99 |
-
(0.26862954, 0.26130258, 0.27577711),
|
100 |
-
),
|
101 |
-
]
|
102 |
-
)
|
103 |
-
|
104 |
-
|
105 |
-
def available_models() -> List[str]:
|
106 |
-
"""Returns the names of available CLIP models"""
|
107 |
-
return list(_MODELS.keys())
|
108 |
-
|
109 |
-
|
110 |
-
def load(
|
111 |
-
name: str,
|
112 |
-
mask_prompt_depth: int = 0,
|
113 |
-
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
|
114 |
-
jit=False,
|
115 |
-
):
|
116 |
-
"""Load a CLIP model
|
117 |
-
|
118 |
-
Parameters
|
119 |
-
----------
|
120 |
-
name : str
|
121 |
-
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
122 |
-
|
123 |
-
device : Union[str, torch.device]
|
124 |
-
The device to put the loaded model
|
125 |
-
|
126 |
-
jit : bool
|
127 |
-
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
128 |
-
|
129 |
-
Returns
|
130 |
-
-------
|
131 |
-
model : torch.nn.Module
|
132 |
-
The CLIP model
|
133 |
-
|
134 |
-
preprocess : Callable[[PIL.Image], torch.Tensor]
|
135 |
-
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
136 |
-
"""
|
137 |
-
if name in _MODELS:
|
138 |
-
model_path = _download(_MODELS[name])
|
139 |
-
elif os.path.isfile(name):
|
140 |
-
model_path = name
|
141 |
-
else:
|
142 |
-
raise RuntimeError(
|
143 |
-
f"Model {name} not found; available models = {available_models()}"
|
144 |
-
)
|
145 |
-
|
146 |
-
try:
|
147 |
-
# loading JIT archive
|
148 |
-
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
149 |
-
state_dict = None
|
150 |
-
except RuntimeError:
|
151 |
-
# loading saved state dict
|
152 |
-
if jit:
|
153 |
-
warnings.warn(
|
154 |
-
f"File {model_path} is not a JIT archive. Loading as a state dict instead"
|
155 |
-
)
|
156 |
-
jit = False
|
157 |
-
state_dict = torch.load(model_path, map_location="cpu")
|
158 |
-
if 'state_dict' in state_dict:
|
159 |
-
new_state_dict = OrderedDict()
|
160 |
-
for k, v in state_dict['state_dict'].items():
|
161 |
-
if k.startswith('module.'):
|
162 |
-
name = k[7:] # remove `module.`
|
163 |
-
new_state_dict[name] = v
|
164 |
-
state_dict = new_state_dict
|
165 |
-
|
166 |
-
if not jit:
|
167 |
-
model = build_model(state_dict or model.state_dict(), mask_prompt_depth).to(device)
|
168 |
-
if str(device) == "cpu":
|
169 |
-
model.float()
|
170 |
-
return model, _transform(model.visual.input_resolution)
|
171 |
-
|
172 |
-
# patch the device names
|
173 |
-
device_holder = torch.jit.trace(
|
174 |
-
lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]
|
175 |
-
)
|
176 |
-
device_node = [
|
177 |
-
n
|
178 |
-
for n in device_holder.graph.findAllNodes("prim::Constant")
|
179 |
-
if "Device" in repr(n)
|
180 |
-
][-1]
|
181 |
-
|
182 |
-
def patch_device(module):
|
183 |
-
try:
|
184 |
-
graphs = [module.graph] if hasattr(module, "graph") else []
|
185 |
-
except RuntimeError:
|
186 |
-
graphs = []
|
187 |
-
|
188 |
-
if hasattr(module, "forward1"):
|
189 |
-
graphs.append(module.forward1.graph)
|
190 |
-
|
191 |
-
for graph in graphs:
|
192 |
-
for node in graph.findAllNodes("prim::Constant"):
|
193 |
-
if "value" in node.attributeNames() and str(node["value"]).startswith(
|
194 |
-
"cuda"
|
195 |
-
):
|
196 |
-
node.copyAttributes(device_node)
|
197 |
-
|
198 |
-
model.apply(patch_device)
|
199 |
-
patch_device(model.encode_image)
|
200 |
-
patch_device(model.encode_text)
|
201 |
-
|
202 |
-
# patch dtype to float32 on CPU
|
203 |
-
if str(device) == "cpu":
|
204 |
-
float_holder = torch.jit.trace(
|
205 |
-
lambda: torch.ones([]).float(), example_inputs=[]
|
206 |
-
)
|
207 |
-
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
208 |
-
float_node = float_input.node()
|
209 |
-
|
210 |
-
def patch_float(module):
|
211 |
-
try:
|
212 |
-
graphs = [module.graph] if hasattr(module, "graph") else []
|
213 |
-
except RuntimeError:
|
214 |
-
graphs = []
|
215 |
-
|
216 |
-
if hasattr(module, "forward1"):
|
217 |
-
graphs.append(module.forward1.graph)
|
218 |
-
|
219 |
-
for graph in graphs:
|
220 |
-
for node in graph.findAllNodes("aten::to"):
|
221 |
-
inputs = list(node.inputs())
|
222 |
-
for i in [
|
223 |
-
1,
|
224 |
-
2,
|
225 |
-
]: # dtype can be the second or third argument to aten::to()
|
226 |
-
if inputs[i].node()["value"] == 5:
|
227 |
-
inputs[i].node().copyAttributes(float_node)
|
228 |
-
|
229 |
-
model.apply(patch_float)
|
230 |
-
patch_float(model.encode_image)
|
231 |
-
patch_float(model.encode_text)
|
232 |
-
|
233 |
-
model.float()
|
234 |
-
|
235 |
-
return model, _transform(model.input_resolution.item())
|
236 |
-
|
237 |
-
|
238 |
-
def tokenize(
|
239 |
-
texts: Union[str, List[str]],
|
240 |
-
context_length: int = 77,
|
241 |
-
truncate: bool = False,
|
242 |
-
return_length: bool = False,
|
243 |
-
) -> torch.LongTensor:
|
244 |
-
"""
|
245 |
-
Returns the tokenized representation of given input string(s)
|
246 |
-
|
247 |
-
Parameters
|
248 |
-
----------
|
249 |
-
texts : Union[str, List[str]]
|
250 |
-
An input string or a list of input strings to tokenize
|
251 |
-
|
252 |
-
context_length : int
|
253 |
-
The context length to use; all CLIP models use 77 as the context length
|
254 |
-
|
255 |
-
truncate: bool
|
256 |
-
Whether to truncate the text in case its encoding is longer than the context length
|
257 |
-
|
258 |
-
Returns
|
259 |
-
-------
|
260 |
-
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
261 |
-
"""
|
262 |
-
if isinstance(texts, str):
|
263 |
-
texts = [texts]
|
264 |
-
|
265 |
-
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
266 |
-
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
267 |
-
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
268 |
-
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
269 |
-
length = []
|
270 |
-
for i, tokens in enumerate(all_tokens):
|
271 |
-
if len(tokens) > context_length:
|
272 |
-
if truncate:
|
273 |
-
tokens = tokens[:context_length]
|
274 |
-
tokens[-1] = eot_token
|
275 |
-
length.append(context_length)
|
276 |
-
else:
|
277 |
-
raise RuntimeError(
|
278 |
-
f"Input {texts[i]} is too long for context length {context_length}"
|
279 |
-
)
|
280 |
-
else:
|
281 |
-
length.append(len(tokens))
|
282 |
-
result[i, : len(tokens)] = torch.tensor(tokens)
|
283 |
-
if return_length:
|
284 |
-
return result, length
|
285 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
open_vocab_seg/modeling/clip_adapter/model.py
DELETED
@@ -1,613 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
-
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
|
3 |
-
# Modified by Feng Liang from https://github.com/openai/CLIP/blob/main/clip/model.py
|
4 |
-
|
5 |
-
from collections import OrderedDict
|
6 |
-
from typing import Tuple, Union
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from torch import nn
|
12 |
-
|
13 |
-
|
14 |
-
class Bottleneck(nn.Module):
|
15 |
-
expansion = 4
|
16 |
-
|
17 |
-
def __init__(self, inplanes, planes, stride=1):
|
18 |
-
super().__init__()
|
19 |
-
|
20 |
-
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
21 |
-
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
22 |
-
self.bn1 = nn.BatchNorm2d(planes)
|
23 |
-
|
24 |
-
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
25 |
-
self.bn2 = nn.BatchNorm2d(planes)
|
26 |
-
|
27 |
-
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
28 |
-
|
29 |
-
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
30 |
-
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
31 |
-
|
32 |
-
self.relu = nn.ReLU(inplace=True)
|
33 |
-
self.downsample = None
|
34 |
-
self.stride = stride
|
35 |
-
|
36 |
-
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
37 |
-
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
38 |
-
self.downsample = nn.Sequential(
|
39 |
-
OrderedDict(
|
40 |
-
[
|
41 |
-
("-1", nn.AvgPool2d(stride)),
|
42 |
-
(
|
43 |
-
"0",
|
44 |
-
nn.Conv2d(
|
45 |
-
inplanes,
|
46 |
-
planes * self.expansion,
|
47 |
-
1,
|
48 |
-
stride=1,
|
49 |
-
bias=False,
|
50 |
-
),
|
51 |
-
),
|
52 |
-
("1", nn.BatchNorm2d(planes * self.expansion)),
|
53 |
-
]
|
54 |
-
)
|
55 |
-
)
|
56 |
-
|
57 |
-
def forward(self, x: torch.Tensor):
|
58 |
-
identity = x
|
59 |
-
|
60 |
-
out = self.relu(self.bn1(self.conv1(x)))
|
61 |
-
out = self.relu(self.bn2(self.conv2(out)))
|
62 |
-
out = self.avgpool(out)
|
63 |
-
out = self.bn3(self.conv3(out))
|
64 |
-
|
65 |
-
if self.downsample is not None:
|
66 |
-
identity = self.downsample(x)
|
67 |
-
|
68 |
-
out += identity
|
69 |
-
out = self.relu(out)
|
70 |
-
return out
|
71 |
-
|
72 |
-
|
73 |
-
class AttentionPool2d(nn.Module):
|
74 |
-
def __init__(
|
75 |
-
self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
|
76 |
-
):
|
77 |
-
super().__init__()
|
78 |
-
self.positional_embedding = nn.Parameter(
|
79 |
-
torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5
|
80 |
-
)
|
81 |
-
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
82 |
-
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
83 |
-
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
84 |
-
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
85 |
-
self.num_heads = num_heads
|
86 |
-
self.grid_size = spacial_dim
|
87 |
-
|
88 |
-
def forward(self, x, mask=None, return_cls=True):
|
89 |
-
b, c, gh, gw = x.shape
|
90 |
-
# remove irrelated feature
|
91 |
-
if mask is not None:
|
92 |
-
mask = F.interpolate(mask[:, None, ...], size=(gh, gw)).squeeze(
|
93 |
-
1
|
94 |
-
) # [N,H,W] -> [N,grid,grid]
|
95 |
-
mask = (mask > 0.5).reshape(mask.shape[0], -1)
|
96 |
-
mask = torch.cat([mask, mask.new_ones(mask.shape[0], 1)], dim=1)
|
97 |
-
if x.size()[0] == 1:
|
98 |
-
x = x.expand(mask.shape[0], c, gh, gw)
|
99 |
-
|
100 |
-
x = x.reshape(x.shape[0], c, gh * gw).permute(2, 0, 1) # NCHW -> (HW)NC
|
101 |
-
|
102 |
-
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
103 |
-
positional_embedding = self.positional_embedding
|
104 |
-
if not (self.positional_embedding.shape[0] == x.shape[0]):
|
105 |
-
cls_pos = positional_embedding[0:1, :]
|
106 |
-
per_pos_embedding = (
|
107 |
-
F.interpolate(
|
108 |
-
positional_embedding[1:, :]
|
109 |
-
.permute(1, 0)
|
110 |
-
.view(1, -1, self.grid_size, self.grid_size),
|
111 |
-
size=(gh, gw),
|
112 |
-
mode="bicubic",
|
113 |
-
)
|
114 |
-
.reshape(-1, gh * gw)
|
115 |
-
.permute(1, 0)
|
116 |
-
)
|
117 |
-
positional_embedding = torch.cat([cls_pos, per_pos_embedding])
|
118 |
-
|
119 |
-
x = x + positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
120 |
-
x, _ = F.multi_head_attention_forward(
|
121 |
-
query=x,
|
122 |
-
key=x,
|
123 |
-
value=x,
|
124 |
-
embed_dim_to_check=x.shape[-1],
|
125 |
-
num_heads=self.num_heads,
|
126 |
-
q_proj_weight=self.q_proj.weight,
|
127 |
-
k_proj_weight=self.k_proj.weight,
|
128 |
-
v_proj_weight=self.v_proj.weight,
|
129 |
-
in_proj_weight=None,
|
130 |
-
in_proj_bias=torch.cat(
|
131 |
-
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
|
132 |
-
),
|
133 |
-
bias_k=None,
|
134 |
-
bias_v=None,
|
135 |
-
add_zero_attn=False,
|
136 |
-
dropout_p=0,
|
137 |
-
out_proj_weight=self.c_proj.weight,
|
138 |
-
out_proj_bias=self.c_proj.bias,
|
139 |
-
use_separate_proj_weight=True,
|
140 |
-
training=self.training,
|
141 |
-
need_weights=False,
|
142 |
-
key_padding_mask=mask,
|
143 |
-
)
|
144 |
-
|
145 |
-
if return_cls:
|
146 |
-
return x[0]
|
147 |
-
else:
|
148 |
-
return x
|
149 |
-
|
150 |
-
|
151 |
-
class ModifiedResNet(nn.Module):
|
152 |
-
"""
|
153 |
-
A ResNet class that is similar to torchvision's but contains the following changes:
|
154 |
-
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
155 |
-
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
156 |
-
- The final pooling layer is a QKV attention instead of an average pool
|
157 |
-
"""
|
158 |
-
|
159 |
-
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
160 |
-
super().__init__()
|
161 |
-
self.output_dim = output_dim
|
162 |
-
self.input_resolution = input_resolution
|
163 |
-
|
164 |
-
# the 3-layer stem
|
165 |
-
self.conv1 = nn.Conv2d(
|
166 |
-
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
|
167 |
-
)
|
168 |
-
self.bn1 = nn.BatchNorm2d(width // 2)
|
169 |
-
self.conv2 = nn.Conv2d(
|
170 |
-
width // 2, width // 2, kernel_size=3, padding=1, bias=False
|
171 |
-
)
|
172 |
-
self.bn2 = nn.BatchNorm2d(width // 2)
|
173 |
-
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
174 |
-
self.bn3 = nn.BatchNorm2d(width)
|
175 |
-
self.avgpool = nn.AvgPool2d(2)
|
176 |
-
self.relu = nn.ReLU(inplace=True)
|
177 |
-
|
178 |
-
# residual layers
|
179 |
-
self._inplanes = width # this is a *mutable* variable used during construction
|
180 |
-
self.layer1 = self._make_layer(width, layers[0])
|
181 |
-
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
182 |
-
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
183 |
-
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
184 |
-
|
185 |
-
embed_dim = width * 32 # the ResNet feature dimension
|
186 |
-
self.attnpool = AttentionPool2d(
|
187 |
-
input_resolution // 32, embed_dim, heads, output_dim
|
188 |
-
)
|
189 |
-
|
190 |
-
def _make_layer(self, planes, blocks, stride=1):
|
191 |
-
layers = [Bottleneck(self._inplanes, planes, stride)]
|
192 |
-
|
193 |
-
self._inplanes = planes * Bottleneck.expansion
|
194 |
-
for _ in range(1, blocks):
|
195 |
-
layers.append(Bottleneck(self._inplanes, planes))
|
196 |
-
|
197 |
-
return nn.Sequential(*layers)
|
198 |
-
|
199 |
-
def forward(self, x, mask: torch.Tensor = None, return_cls=True):
|
200 |
-
def stem(x):
|
201 |
-
for conv, bn in [
|
202 |
-
(self.conv1, self.bn1),
|
203 |
-
(self.conv2, self.bn2),
|
204 |
-
(self.conv3, self.bn3),
|
205 |
-
]:
|
206 |
-
x = self.relu(bn(conv(x)))
|
207 |
-
x = self.avgpool(x)
|
208 |
-
return x
|
209 |
-
|
210 |
-
x = x.type(self.conv1.weight.dtype)
|
211 |
-
x = stem(x) # 1/4,1/4
|
212 |
-
x = self.layer1(x)
|
213 |
-
x = self.layer2(x) # 1/8,1/8
|
214 |
-
x = self.layer3(x) # 1/16,1/16
|
215 |
-
x = self.layer4(x) # 1/32,1/32
|
216 |
-
b, c, gh, gw = x.shape
|
217 |
-
x = self.attnpool(x, mask, return_cls)
|
218 |
-
if not return_cls:
|
219 |
-
return x[1:].permute(1, 0, 2).reshape(b, gh, gw, x.shape[-1]) # N,L,C
|
220 |
-
return x
|
221 |
-
|
222 |
-
|
223 |
-
class LayerNorm(nn.LayerNorm):
|
224 |
-
"""Subclass torch's LayerNorm to handle fp16."""
|
225 |
-
|
226 |
-
def forward(self, x: torch.Tensor):
|
227 |
-
orig_type = x.dtype
|
228 |
-
ret = super().forward(x.type(torch.float32))
|
229 |
-
return ret.type(orig_type)
|
230 |
-
|
231 |
-
|
232 |
-
class QuickGELU(nn.Module):
|
233 |
-
def forward(self, x: torch.Tensor):
|
234 |
-
return x * torch.sigmoid(1.702 * x)
|
235 |
-
|
236 |
-
|
237 |
-
class ResidualAttentionBlock(nn.Module):
|
238 |
-
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
239 |
-
super().__init__()
|
240 |
-
|
241 |
-
self.attn = nn.MultiheadAttention(d_model, n_head)
|
242 |
-
self.ln_1 = LayerNorm(d_model)
|
243 |
-
self.mlp = nn.Sequential(
|
244 |
-
OrderedDict(
|
245 |
-
[
|
246 |
-
("c_fc", nn.Linear(d_model, d_model * 4)),
|
247 |
-
("gelu", QuickGELU()),
|
248 |
-
("c_proj", nn.Linear(d_model * 4, d_model)),
|
249 |
-
]
|
250 |
-
)
|
251 |
-
)
|
252 |
-
self.ln_2 = LayerNorm(d_model)
|
253 |
-
self.attn_mask = attn_mask
|
254 |
-
|
255 |
-
def attention(self, x: torch.Tensor, **kwargs):
|
256 |
-
self.attn_mask = (
|
257 |
-
self.attn_mask.to(dtype=x.dtype, device=x.device)
|
258 |
-
if self.attn_mask is not None
|
259 |
-
else None
|
260 |
-
)
|
261 |
-
return self.attn(
|
262 |
-
x, x, x, need_weights=False, attn_mask=self.attn_mask, **kwargs
|
263 |
-
)[0]
|
264 |
-
|
265 |
-
def forward(self, x: torch.Tensor, **kwargs):
|
266 |
-
x = x + self.attention(self.ln_1(x), **kwargs)
|
267 |
-
x = x + self.mlp(self.ln_2(x))
|
268 |
-
return x
|
269 |
-
|
270 |
-
|
271 |
-
class Transformer(nn.Module):
|
272 |
-
def __init__(
|
273 |
-
self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None
|
274 |
-
):
|
275 |
-
super().__init__()
|
276 |
-
self.width = width
|
277 |
-
self.layers = layers
|
278 |
-
self.resblocks = nn.Sequential(
|
279 |
-
*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]
|
280 |
-
)
|
281 |
-
|
282 |
-
def forward(self, x: torch.Tensor, **kwargs):
|
283 |
-
for block in self.resblocks:
|
284 |
-
x = block(x, **kwargs)
|
285 |
-
return x
|
286 |
-
|
287 |
-
|
288 |
-
class VisionTransformer(nn.Module):
|
289 |
-
def __init__(
|
290 |
-
self,
|
291 |
-
input_resolution: int,
|
292 |
-
patch_size: int,
|
293 |
-
mask_prompt_depth: int,
|
294 |
-
width: int,
|
295 |
-
layers: int,
|
296 |
-
heads: int,
|
297 |
-
output_dim: int,
|
298 |
-
):
|
299 |
-
super().__init__()
|
300 |
-
self.input_resolution = input_resolution
|
301 |
-
self.output_dim = output_dim
|
302 |
-
self.conv1 = nn.Conv2d(
|
303 |
-
in_channels=3,
|
304 |
-
out_channels=width,
|
305 |
-
kernel_size=patch_size,
|
306 |
-
stride=patch_size,
|
307 |
-
bias=False,
|
308 |
-
)
|
309 |
-
|
310 |
-
scale = width ** -0.5
|
311 |
-
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
312 |
-
self.positional_embedding = nn.Parameter(
|
313 |
-
scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)
|
314 |
-
)
|
315 |
-
self.grid_size = input_resolution // patch_size
|
316 |
-
self.ln_pre = LayerNorm(width)
|
317 |
-
|
318 |
-
self.transformer = Transformer(width, layers, heads)
|
319 |
-
|
320 |
-
self.ln_post = LayerNorm(width)
|
321 |
-
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
322 |
-
|
323 |
-
self.mask_pool = nn.AvgPool2d(patch_size, stride=patch_size)
|
324 |
-
self.mask_prompt_depth = mask_prompt_depth
|
325 |
-
self.mask_embedding = nn.Parameter(torch.zeros(self.mask_prompt_depth, self.grid_size * self.grid_size, width))
|
326 |
-
|
327 |
-
def forward(self, x: torch.Tensor, m: torch.Tensor = None):
|
328 |
-
x = self.conv1(x) # shape = [*, width, grid, grid]
|
329 |
-
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
330 |
-
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
331 |
-
if m is not None:
|
332 |
-
m = self.mask_pool(m.to(torch.float).squeeze()).reshape(m.shape[0], -1).unsqueeze(-1)
|
333 |
-
m = torch.ceil(m)
|
334 |
-
if self.mask_embedding.shape[1] == 1:
|
335 |
-
mask_embedding = self.mask_embedding.to(x.dtype).repeat(1, x.shape[1], 1)
|
336 |
-
else:
|
337 |
-
mask_embedding = self.mask_embedding.to(x.dtype)
|
338 |
-
x = x * m + mask_embedding[0].unsqueeze(0) * (1 - m)
|
339 |
-
|
340 |
-
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
341 |
-
x = x + self.positional_embedding.to(x.dtype)
|
342 |
-
x = self.ln_pre(x)
|
343 |
-
|
344 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
345 |
-
if m is not None:
|
346 |
-
for i, blk in enumerate(self.transformer.resblocks):
|
347 |
-
d = i + 1
|
348 |
-
x = blk(x)
|
349 |
-
if d < self.mask_prompt_depth:
|
350 |
-
masked_x = x[1:, :, :] * m.permute(1, 0, 2) + \
|
351 |
-
mask_embedding[d].unsqueeze(0).permute(1, 0, 2) * (1 - m.permute(1, 0, 2))
|
352 |
-
x = torch.cat([x[:1, :, :], masked_x], dim=0)
|
353 |
-
else:
|
354 |
-
x = self.transformer(x)
|
355 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
356 |
-
|
357 |
-
x = self.ln_post(x[:, 0, :])
|
358 |
-
|
359 |
-
if self.proj is not None:
|
360 |
-
x = x @ self.proj
|
361 |
-
|
362 |
-
return x
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
class CLIP(nn.Module):
|
367 |
-
def __init__(
|
368 |
-
self,
|
369 |
-
embed_dim: int,
|
370 |
-
# vision
|
371 |
-
image_resolution: int,
|
372 |
-
vision_layers: Union[Tuple[int, int, int, int], int],
|
373 |
-
vision_width: int,
|
374 |
-
vision_patch_size: int,
|
375 |
-
mask_prompt_depth: int,
|
376 |
-
# text
|
377 |
-
context_length: int,
|
378 |
-
vocab_size: int,
|
379 |
-
transformer_width: int,
|
380 |
-
transformer_heads: int,
|
381 |
-
transformer_layers: int,
|
382 |
-
):
|
383 |
-
super().__init__()
|
384 |
-
|
385 |
-
self.context_length = context_length
|
386 |
-
|
387 |
-
if isinstance(vision_layers, (tuple, list)):
|
388 |
-
vision_heads = vision_width * 32 // 64
|
389 |
-
self.visual = ModifiedResNet(
|
390 |
-
layers=vision_layers,
|
391 |
-
output_dim=embed_dim,
|
392 |
-
heads=vision_heads,
|
393 |
-
input_resolution=image_resolution,
|
394 |
-
width=vision_width,
|
395 |
-
)
|
396 |
-
else:
|
397 |
-
vision_heads = vision_width // 64
|
398 |
-
self.visual = VisionTransformer(
|
399 |
-
input_resolution=image_resolution,
|
400 |
-
patch_size=vision_patch_size,
|
401 |
-
mask_prompt_depth=mask_prompt_depth,
|
402 |
-
width=vision_width,
|
403 |
-
layers=vision_layers,
|
404 |
-
heads=vision_heads,
|
405 |
-
output_dim=embed_dim,
|
406 |
-
)
|
407 |
-
|
408 |
-
self.transformer = Transformer(
|
409 |
-
width=transformer_width,
|
410 |
-
layers=transformer_layers,
|
411 |
-
heads=transformer_heads,
|
412 |
-
attn_mask=self.build_attention_mask(),
|
413 |
-
)
|
414 |
-
|
415 |
-
self.vocab_size = vocab_size
|
416 |
-
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
417 |
-
self.positional_embedding = nn.Parameter(
|
418 |
-
torch.empty(self.context_length, transformer_width)
|
419 |
-
)
|
420 |
-
self.ln_final = LayerNorm(transformer_width)
|
421 |
-
|
422 |
-
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
423 |
-
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
424 |
-
|
425 |
-
self.initialize_parameters()
|
426 |
-
|
427 |
-
def initialize_parameters(self):
|
428 |
-
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
429 |
-
nn.init.normal_(self.positional_embedding, std=0.01)
|
430 |
-
|
431 |
-
if isinstance(self.visual, ModifiedResNet):
|
432 |
-
if self.visual.attnpool is not None:
|
433 |
-
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
434 |
-
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
435 |
-
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
436 |
-
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
437 |
-
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
438 |
-
|
439 |
-
for resnet_block in [
|
440 |
-
self.visual.layer1,
|
441 |
-
self.visual.layer2,
|
442 |
-
self.visual.layer3,
|
443 |
-
self.visual.layer4,
|
444 |
-
]:
|
445 |
-
for name, param in resnet_block.named_parameters():
|
446 |
-
if name.endswith("bn3.weight"):
|
447 |
-
nn.init.zeros_(param)
|
448 |
-
|
449 |
-
proj_std = (self.transformer.width ** -0.5) * (
|
450 |
-
(2 * self.transformer.layers) ** -0.5
|
451 |
-
)
|
452 |
-
attn_std = self.transformer.width ** -0.5
|
453 |
-
fc_std = (2 * self.transformer.width) ** -0.5
|
454 |
-
for block in self.transformer.resblocks:
|
455 |
-
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
456 |
-
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
457 |
-
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
458 |
-
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
459 |
-
|
460 |
-
if self.text_projection is not None:
|
461 |
-
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
462 |
-
|
463 |
-
def build_attention_mask(self):
|
464 |
-
# lazily create causal attention mask, with full attention between the vision tokens
|
465 |
-
# pytorch uses additive attention mask; fill with -inf
|
466 |
-
mask = torch.empty(self.context_length, self.context_length)
|
467 |
-
mask.fill_(float("-inf"))
|
468 |
-
mask.triu_(1) # zero out the lower diagonal
|
469 |
-
return mask
|
470 |
-
|
471 |
-
@property
|
472 |
-
def dtype(self):
|
473 |
-
return self.visual.conv1.weight.dtype
|
474 |
-
|
475 |
-
def encode_image(self, image, **kwargs):
|
476 |
-
return self.visual(image.type(self.dtype), **kwargs)
|
477 |
-
|
478 |
-
def encode_text(self, text):
|
479 |
-
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
480 |
-
|
481 |
-
x = x + self.positional_embedding.type(self.dtype)
|
482 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
483 |
-
x = self.transformer(x)
|
484 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
485 |
-
x = self.ln_final(x).type(self.dtype)
|
486 |
-
|
487 |
-
# x.shape = [batch_size, n_ctx, transformer.width]
|
488 |
-
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
489 |
-
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
490 |
-
|
491 |
-
return x
|
492 |
-
|
493 |
-
def forward(self, image, text):
|
494 |
-
image_features = self.encode_image(image)
|
495 |
-
text_features = self.encode_text(text)
|
496 |
-
|
497 |
-
# normalized features
|
498 |
-
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
499 |
-
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
500 |
-
|
501 |
-
# cosine similarity as logits
|
502 |
-
logit_scale = self.logit_scale.exp()
|
503 |
-
logits_per_image = logit_scale * image_features @ text_features.t()
|
504 |
-
logits_per_text = logit_scale * text_features @ image_features.t()
|
505 |
-
|
506 |
-
# shape = [global_batch_size, global_batch_size]
|
507 |
-
return logits_per_image, logits_per_text
|
508 |
-
|
509 |
-
|
510 |
-
def convert_weights(model: nn.Module):
|
511 |
-
"""Convert applicable model parameters to fp16"""
|
512 |
-
|
513 |
-
def _convert_weights_to_fp16(l):
|
514 |
-
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
515 |
-
l.weight.data = l.weight.data.half()
|
516 |
-
if l.bias is not None:
|
517 |
-
l.bias.data = l.bias.data.half()
|
518 |
-
|
519 |
-
if isinstance(l, nn.MultiheadAttention):
|
520 |
-
for attr in [
|
521 |
-
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
522 |
-
"in_proj_bias",
|
523 |
-
"bias_k",
|
524 |
-
"bias_v",
|
525 |
-
]:
|
526 |
-
tensor = getattr(l, attr)
|
527 |
-
if tensor is not None:
|
528 |
-
tensor.data = tensor.data.half()
|
529 |
-
|
530 |
-
for name in ["text_projection", "proj"]:
|
531 |
-
if hasattr(l, name):
|
532 |
-
attr = getattr(l, name)
|
533 |
-
if attr is not None:
|
534 |
-
attr.data = attr.data.half()
|
535 |
-
|
536 |
-
model.apply(_convert_weights_to_fp16)
|
537 |
-
|
538 |
-
|
539 |
-
def build_model(state_dict: dict, mask_prompt_depth: int = 0):
|
540 |
-
vit = "visual.proj" in state_dict
|
541 |
-
|
542 |
-
if vit:
|
543 |
-
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
544 |
-
vision_layers = len(
|
545 |
-
[
|
546 |
-
k
|
547 |
-
for k in state_dict.keys()
|
548 |
-
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
|
549 |
-
]
|
550 |
-
)
|
551 |
-
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
552 |
-
grid_size = round(
|
553 |
-
(state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5
|
554 |
-
)
|
555 |
-
image_resolution = vision_patch_size * grid_size
|
556 |
-
else:
|
557 |
-
assert mask_prompt_depth == 0, 'ResNets do not support mask prompt tuning'
|
558 |
-
counts: list = [
|
559 |
-
len(
|
560 |
-
set(
|
561 |
-
k.split(".")[2]
|
562 |
-
for k in state_dict
|
563 |
-
if k.startswith(f"visual.layer{b}")
|
564 |
-
)
|
565 |
-
)
|
566 |
-
for b in [1, 2, 3, 4]
|
567 |
-
]
|
568 |
-
vision_layers = tuple(counts)
|
569 |
-
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
570 |
-
output_width = round(
|
571 |
-
(state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5
|
572 |
-
)
|
573 |
-
vision_patch_size = None
|
574 |
-
assert (
|
575 |
-
output_width ** 2 + 1
|
576 |
-
== state_dict["visual.attnpool.positional_embedding"].shape[0]
|
577 |
-
)
|
578 |
-
image_resolution = output_width * 32
|
579 |
-
|
580 |
-
embed_dim = state_dict["text_projection"].shape[1]
|
581 |
-
context_length = state_dict["positional_embedding"].shape[0]
|
582 |
-
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
583 |
-
transformer_width = state_dict["ln_final.weight"].shape[0]
|
584 |
-
transformer_heads = transformer_width // 64
|
585 |
-
transformer_layers = len(
|
586 |
-
set(
|
587 |
-
k.split(".")[2]
|
588 |
-
for k in state_dict
|
589 |
-
if k.startswith(f"transformer.resblocks")
|
590 |
-
)
|
591 |
-
)
|
592 |
-
|
593 |
-
model = CLIP(
|
594 |
-
embed_dim,
|
595 |
-
image_resolution,
|
596 |
-
vision_layers,
|
597 |
-
vision_width,
|
598 |
-
vision_patch_size,
|
599 |
-
mask_prompt_depth,
|
600 |
-
context_length,
|
601 |
-
vocab_size,
|
602 |
-
transformer_width,
|
603 |
-
transformer_heads,
|
604 |
-
transformer_layers,
|
605 |
-
)
|
606 |
-
|
607 |
-
for key in ["input_resolution", "context_length", "vocab_size"]:
|
608 |
-
if key in state_dict:
|
609 |
-
del state_dict[key]
|
610 |
-
|
611 |
-
convert_weights(model)
|
612 |
-
model.load_state_dict(state_dict, strict=False)
|
613 |
-
return model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
open_vocab_seg/modeling/clip_adapter/simple_tokenizer.py
DELETED
@@ -1,150 +0,0 @@
|
|
1 |
-
import gzip
|
2 |
-
import html
|
3 |
-
import os
|
4 |
-
from functools import lru_cache
|
5 |
-
|
6 |
-
import ftfy
|
7 |
-
import regex as re
|
8 |
-
|
9 |
-
|
10 |
-
@lru_cache()
|
11 |
-
def default_bpe():
|
12 |
-
return os.path.join(
|
13 |
-
os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz"
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
@lru_cache()
|
18 |
-
def bytes_to_unicode():
|
19 |
-
"""
|
20 |
-
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
21 |
-
The reversible bpe codes work on unicode strings.
|
22 |
-
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
23 |
-
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
24 |
-
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
25 |
-
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
26 |
-
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
27 |
-
"""
|
28 |
-
bs = (
|
29 |
-
list(range(ord("!"), ord("~") + 1))
|
30 |
-
+ list(range(ord("¡"), ord("¬") + 1))
|
31 |
-
+ list(range(ord("®"), ord("ÿ") + 1))
|
32 |
-
)
|
33 |
-
cs = bs[:]
|
34 |
-
n = 0
|
35 |
-
for b in range(2 ** 8):
|
36 |
-
if b not in bs:
|
37 |
-
bs.append(b)
|
38 |
-
cs.append(2 ** 8 + n)
|
39 |
-
n += 1
|
40 |
-
cs = [chr(n) for n in cs]
|
41 |
-
return dict(zip(bs, cs))
|
42 |
-
|
43 |
-
|
44 |
-
def get_pairs(word):
|
45 |
-
"""Return set of symbol pairs in a word.
|
46 |
-
Word is represented as tuple of symbols (symbols being variable-length strings).
|
47 |
-
"""
|
48 |
-
pairs = set()
|
49 |
-
prev_char = word[0]
|
50 |
-
for char in word[1:]:
|
51 |
-
pairs.add((prev_char, char))
|
52 |
-
prev_char = char
|
53 |
-
return pairs
|
54 |
-
|
55 |
-
|
56 |
-
def basic_clean(text):
|
57 |
-
text = ftfy.fix_text(text)
|
58 |
-
text = html.unescape(html.unescape(text))
|
59 |
-
return text.strip()
|
60 |
-
|
61 |
-
|
62 |
-
def whitespace_clean(text):
|
63 |
-
text = re.sub(r"\s+", " ", text)
|
64 |
-
text = text.strip()
|
65 |
-
return text
|
66 |
-
|
67 |
-
|
68 |
-
class SimpleTokenizer(object):
|
69 |
-
def __init__(self, bpe_path: str = default_bpe()):
|
70 |
-
self.byte_encoder = bytes_to_unicode()
|
71 |
-
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
72 |
-
merges = gzip.open(bpe_path).read().decode("utf-8").split("\n")
|
73 |
-
merges = merges[1 : 49152 - 256 - 2 + 1]
|
74 |
-
merges = [tuple(merge.split()) for merge in merges]
|
75 |
-
vocab = list(bytes_to_unicode().values())
|
76 |
-
vocab = vocab + [v + "</w>" for v in vocab]
|
77 |
-
for merge in merges:
|
78 |
-
vocab.append("".join(merge))
|
79 |
-
vocab.extend(["<|startoftext|>", "<|endoftext|>"])
|
80 |
-
self.encoder = dict(zip(vocab, range(len(vocab))))
|
81 |
-
self.decoder = {v: k for k, v in self.encoder.items()}
|
82 |
-
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
83 |
-
self.cache = {
|
84 |
-
"<|startoftext|>": "<|startoftext|>",
|
85 |
-
"<|endoftext|>": "<|endoftext|>",
|
86 |
-
}
|
87 |
-
self.pat = re.compile(
|
88 |
-
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
89 |
-
re.IGNORECASE,
|
90 |
-
)
|
91 |
-
|
92 |
-
def bpe(self, token):
|
93 |
-
if token in self.cache:
|
94 |
-
return self.cache[token]
|
95 |
-
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
96 |
-
pairs = get_pairs(word)
|
97 |
-
|
98 |
-
if not pairs:
|
99 |
-
return token + "</w>"
|
100 |
-
|
101 |
-
while True:
|
102 |
-
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
103 |
-
if bigram not in self.bpe_ranks:
|
104 |
-
break
|
105 |
-
first, second = bigram
|
106 |
-
new_word = []
|
107 |
-
i = 0
|
108 |
-
while i < len(word):
|
109 |
-
try:
|
110 |
-
j = word.index(first, i)
|
111 |
-
new_word.extend(word[i:j])
|
112 |
-
i = j
|
113 |
-
except:
|
114 |
-
new_word.extend(word[i:])
|
115 |
-
break
|
116 |
-
|
117 |
-
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
118 |
-
new_word.append(first + second)
|
119 |
-
i += 2
|
120 |
-
else:
|
121 |
-
new_word.append(word[i])
|
122 |
-
i += 1
|
123 |
-
new_word = tuple(new_word)
|
124 |
-
word = new_word
|
125 |
-
if len(word) == 1:
|
126 |
-
break
|
127 |
-
else:
|
128 |
-
pairs = get_pairs(word)
|
129 |
-
word = " ".join(word)
|
130 |
-
self.cache[token] = word
|
131 |
-
return word
|
132 |
-
|
133 |
-
def encode(self, text):
|
134 |
-
bpe_tokens = []
|
135 |
-
text = whitespace_clean(basic_clean(text)).lower()
|
136 |
-
for token in re.findall(self.pat, text):
|
137 |
-
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
|
138 |
-
bpe_tokens.extend(
|
139 |
-
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
|
140 |
-
)
|
141 |
-
return bpe_tokens
|
142 |
-
|
143 |
-
def decode(self, tokens):
|
144 |
-
text = "".join([self.decoder[token] for token in tokens])
|
145 |
-
text = (
|
146 |
-
bytearray([self.byte_decoder[c] for c in text])
|
147 |
-
.decode("utf-8", errors="replace")
|
148 |
-
.replace("</w>", " ")
|
149 |
-
)
|
150 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|