Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,147 +1,848 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import panel as pn
|
7 |
-
|
8 |
-
from transformers import CLIPModel, CLIPProcessor
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
pet = random.choice(["cat", "dog"])
|
23 |
-
api_url = f"https://api.the{pet}api.com/v1/images/search"
|
24 |
-
async with aiohttp.ClientSession() as session:
|
25 |
-
async with session.get(api_url) as resp:
|
26 |
-
return (await resp.json())[0]["url"]
|
27 |
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
processor_name: str, model_name: str
|
32 |
-
) -> Tuple[CLIPProcessor, CLIPModel]:
|
33 |
-
processor = CLIPProcessor.from_pretrained(processor_name)
|
34 |
-
model = CLIPModel.from_pretrained(model_name)
|
35 |
-
return processor, model
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
)
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
class_items = class_names.split(",")
|
79 |
-
class_likelihoods = get_similarity_scores(class_items, pil_img)
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
|
87 |
-
)
|
88 |
-
row_bar = pn.indicators.Progress(
|
89 |
-
value=int(class_likelihood * 100),
|
90 |
-
sizing_mode="stretch_width",
|
91 |
-
bar_color="secondary",
|
92 |
-
margin=(0, 10),
|
93 |
-
design=pn.theme.Material,
|
94 |
-
)
|
95 |
-
results.append(pn.Column(row_label, row_bar))
|
96 |
-
yield results
|
97 |
-
finally:
|
98 |
-
main.disabled = False
|
99 |
-
|
100 |
-
|
101 |
-
# create widgets
|
102 |
-
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
|
103 |
-
|
104 |
-
image_url = pn.widgets.TextInput(
|
105 |
-
name="Image URL to classify",
|
106 |
-
value=pn.bind(random_url, randomize_url),
|
107 |
-
)
|
108 |
-
class_names = pn.widgets.TextInput(
|
109 |
-
name="Comma separated class names",
|
110 |
-
placeholder="Enter possible class names, e.g. cat, dog",
|
111 |
-
value="cat, dog, parrot",
|
112 |
-
)
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
pn.Row(image_url, randomize_url),
|
117 |
-
class_names,
|
118 |
-
)
|
119 |
|
120 |
-
#
|
121 |
-
|
122 |
-
|
123 |
-
height=600,
|
124 |
-
)
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
footer_row.append(pn.Spacer())
|
133 |
-
|
134 |
-
# create dashboard
|
135 |
-
main = pn.WidgetBox(
|
136 |
-
input_widgets,
|
137 |
-
interactive_result,
|
138 |
-
footer_row,
|
139 |
)
|
140 |
|
141 |
-
|
142 |
-
pn.
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import csv
|
4 |
+
import json
|
5 |
+
import math
|
6 |
+
import openai
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import seaborn as sns
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from tqdm import tqdm
|
12 |
+
from scipy import stats
|
13 |
+
from datetime import datetime
|
14 |
+
from collections import defaultdict, Counter
|
15 |
+
from matplotlib.ticker import FuncFormatter
|
16 |
+
from matplotlib.colors import ListedColormap
|
17 |
import panel as pn
|
18 |
+
import altair as alt
|
|
|
19 |
|
20 |
+
def choices_to_df(choices, hue):
|
21 |
+
df = pd.DataFrame(choices, columns=['choices'])
|
22 |
+
df['hue'] = hue
|
23 |
+
df['hue'] = df['hue'].astype(str)
|
24 |
+
return df
|
25 |
|
26 |
+
binrange = (0, 100)
|
27 |
+
moves = []
|
28 |
+
with open('dictator.csv', 'r') as f:
|
29 |
+
reader = csv.reader(f)
|
30 |
+
header = next(reader)
|
31 |
+
col2idx = {col: idx for idx, col in enumerate(header)}
|
32 |
+
for row in reader:
|
33 |
+
record = {col: row[idx] for col, idx in col2idx.items()}
|
34 |
+
|
35 |
+
if record['Role'] != 'first': continue
|
36 |
+
if int(record['Round']) > 1: continue
|
37 |
+
if int(record['Total']) != 100: continue
|
38 |
+
if record['move'] == 'None': continue
|
39 |
+
if record['gameType'] != 'dictator': continue
|
40 |
|
41 |
+
move = float(record['move'])
|
42 |
+
if move < binrange[0] or \
|
43 |
+
move > binrange[1]: continue
|
44 |
+
|
45 |
+
moves.append(move)
|
46 |
|
47 |
+
df_dictator_human = choices_to_df(moves, 'Human')
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
|
50 |
+
df_dictator_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
51 |
|
52 |
+
choices = [25, 35, 70, 30, 20, 25, 40, 80, 30, 30, 40, 30, 30, 30, 30, 30, 40, 40, 30, 30, 40, 30, 60, 20, 40, 25, 30, 30, 30]
|
53 |
+
df_dictator_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
def extract_choices(recrods):
|
56 |
+
choices = [extract_amout(
|
57 |
+
messages[-1]['content'],
|
58 |
+
prefix='$',
|
59 |
+
print_except=True,
|
60 |
+
type=float) for messages in records['messages']
|
61 |
+
]
|
62 |
+
choices = [x for x in choices if x is not None]
|
63 |
+
# print(choices)
|
64 |
+
return choices
|
65 |
|
66 |
+
def extract_amout(
|
67 |
+
message,
|
68 |
+
prefix='',
|
69 |
+
print_except=True,
|
70 |
+
type=float,
|
71 |
+
brackets='[]'
|
72 |
+
):
|
73 |
+
try:
|
74 |
+
matches = extract_brackets(message, brackets=brackets)
|
75 |
+
matches = [s[len(prefix):] \
|
76 |
+
if s.startswith(prefix) \
|
77 |
+
else s for s in matches]
|
78 |
+
invalid = False
|
79 |
+
if len(matches) == 0:
|
80 |
+
invalid = True
|
81 |
+
for i in range(len(matches)):
|
82 |
+
if matches[i] != matches[0]:
|
83 |
+
invalid = True
|
84 |
+
if invalid:
|
85 |
+
raise ValueError('Invalid answer: %s' % message)
|
86 |
+
return type(matches[0])
|
87 |
+
except Exception as e:
|
88 |
+
if print_except: print(e)
|
89 |
+
return None
|
90 |
|
91 |
+
records = json.load(open('dictator_wo_ex_2023_03_13-11_24_07_PM.json', 'r'))
|
92 |
+
choices = extract_choices(records)
|
93 |
|
94 |
+
# Plot 1 - Dictator (altruism)
|
95 |
+
def plot_facet(
|
96 |
+
df_list,
|
97 |
+
x='choices',
|
98 |
+
hue='hue',
|
99 |
+
palette=None,
|
100 |
+
binrange=None,
|
101 |
+
bins=10,
|
102 |
+
# binwidth=10,
|
103 |
+
stat='count',
|
104 |
+
x_label='',
|
105 |
+
sharex=True,
|
106 |
+
sharey=False,
|
107 |
+
subplot=sns.histplot,
|
108 |
+
xticks_locs=None,
|
109 |
+
# kde=False,
|
110 |
+
**kwargs
|
111 |
+
):
|
112 |
+
data = pd.concat(df_list)
|
113 |
+
if binrange is None:
|
114 |
+
binrange = (data[x].min(), data[x].max())
|
115 |
+
g = sns.FacetGrid(
|
116 |
+
data, row=hue, hue=hue,
|
117 |
+
palette=palette,
|
118 |
+
aspect=2, height=2,
|
119 |
+
sharex=sharex, sharey=sharey,
|
120 |
+
despine=True,
|
121 |
)
|
122 |
+
g.map_dataframe(
|
123 |
+
subplot,
|
124 |
+
x=x,
|
125 |
+
# kde=kde,
|
126 |
+
binrange=binrange,
|
127 |
+
bins=bins,
|
128 |
+
stat=stat,
|
129 |
+
**kwargs
|
130 |
)
|
131 |
+
# g.add_legend(title='hue')
|
132 |
+
g.set_axis_labels(x_label, stat.title())
|
133 |
+
g.set_titles(row_template="{row_name}")
|
134 |
+
for ax in g.axes.flat:
|
135 |
+
ax.yaxis.set_major_formatter(
|
136 |
+
FuncFormatter(lambda y, pos: '{:.2f}'.format(y))
|
137 |
+
)
|
138 |
+
|
139 |
+
binwidth = (binrange[1] - binrange[0]) / bins
|
140 |
+
if xticks_locs is None:
|
141 |
+
locs = np.linspace(binrange[0], binrange[1], bins//2+1)
|
142 |
+
locs = [loc + binwidth for loc in locs]
|
143 |
+
else:
|
144 |
+
locs = xticks_locs
|
145 |
+
labels = [str(int(loc)) for loc in locs]
|
146 |
+
locs = [loc + 0.5*binwidth for loc in locs]
|
147 |
+
plt.xticks(locs, labels)
|
148 |
+
|
149 |
+
g.set(xlim=binrange)
|
150 |
+
return g
|
151 |
|
152 |
+
df = df_dictator_human
|
153 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
154 |
|
155 |
+
# Calculate density as a percentage
|
156 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
157 |
+
|
158 |
+
# Create a DataFrame with the density percentages
|
159 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
160 |
+
|
161 |
+
# Create the bar chart using Altair
|
162 |
+
chart1 = alt.Chart(density_df).mark_bar().encode(
|
163 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
164 |
+
y='density:Q',
|
165 |
+
color=alt.value('steelblue'),
|
166 |
+
tooltip=['density']
|
167 |
+
).properties(
|
168 |
+
width=500,
|
169 |
+
title='Density of Choices'
|
170 |
+
).interactive()
|
171 |
+
|
172 |
+
df = df_dictator_gpt4
|
173 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
174 |
+
|
175 |
+
# Calculate density as a percentage
|
176 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
177 |
+
|
178 |
+
# Create a DataFrame with the density percentages
|
179 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
180 |
+
|
181 |
+
# Create the bar chart using Altair
|
182 |
+
chart2 = alt.Chart(density_df).mark_bar().encode(
|
183 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
184 |
+
y='density:Q',
|
185 |
+
color=alt.value('orange'),
|
186 |
+
tooltip=['density']
|
187 |
+
).properties(
|
188 |
+
width=500,
|
189 |
+
title='Density of Choices'
|
190 |
+
).interactive()
|
191 |
+
|
192 |
+
df = df_dictator_turbo
|
193 |
+
|
194 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
195 |
+
|
196 |
+
# Calculate density as a percentage
|
197 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
198 |
+
|
199 |
+
# Create a DataFrame with the density percentages
|
200 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
201 |
+
|
202 |
+
# Create the bar chart using Altair
|
203 |
+
chart3 = alt.Chart(density_df).mark_bar().encode(
|
204 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10)),
|
205 |
+
y='density:Q',
|
206 |
+
color=alt.value('green'),
|
207 |
+
tooltip=['density']
|
208 |
+
).properties(
|
209 |
+
width=500,
|
210 |
+
title='Density of Choices'
|
211 |
+
).interactive()
|
212 |
+
|
213 |
+
final = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
214 |
+
|
215 |
+
#Plot 2 - - Ultimatum (Fairness)
|
216 |
+
df = pd.read_csv('ultimatum_strategy.csv')
|
217 |
+
df = df[df['gameType'] == 'ultimatum_strategy']
|
218 |
+
df = df[df['Role'] == 'player']
|
219 |
+
df = df[df['Round'] == 1]
|
220 |
+
df = df[df['Total'] == 100]
|
221 |
+
df = df[df['move'] != 'None']
|
222 |
+
df['propose'] = df['move'].apply(lambda x: eval(x)[0])
|
223 |
+
df['accept'] = df['move'].apply(lambda x: eval(x)[1])
|
224 |
+
df = df[(df['propose'] >= 0) & (df['propose'] <= 100)]
|
225 |
+
df = df[(df['accept'] >= 0) & (df['accept'] <= 100)]
|
226 |
+
|
227 |
+
df_ultimatum_1_human = choices_to_df(list(df['propose']), 'Human')
|
228 |
+
df_ultimatum_2_human = choices_to_df(list(df['accept']), 'Human')
|
229 |
+
|
230 |
+
choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
|
231 |
+
df_ultimatum_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
232 |
+
|
233 |
+
choices = [40, 40, 40, 30, 70, 70, 50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 30, 30, 35, 50, 40, 70, 40, 60, 60, 70, 40, 50]
|
234 |
+
df_ultimatum_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
235 |
+
|
236 |
+
choices = [50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 25.0, 50.0, 1.0, 1.0, 20.0, 50.0, 50.0, 50.0, 20.0, 50.0, 1.0, 1.0, 1.0, 50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0] + [0, 1]
|
237 |
+
df_ultimatum_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
238 |
+
|
239 |
+
choices = [None, 50, 50, 50, 50, 30, None, None, 30, 33.33, 40, None, 50, 40, None, 1, 30, None, 10, 50, 30, 10, 30, None, 30, None, 10, 30, 30, 30]
|
240 |
+
df_ultimatum_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
241 |
+
|
242 |
+
choices = [50.0, 50.0, 10.0, 40.0, 20.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 50.0, 20.0, 10.0, 50.0, 20.0, 1.0, 1.0, 50.0, 1.0, 20.0, 1.0, 50.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 50.0]
|
243 |
+
df_ultimatum_2_gpt4_female = choices_to_df(choices, hue='ChatGPT-4 Female')
|
244 |
+
|
245 |
+
choices = [1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 50.0, 50.0, 20.0, 20.0, 1.0, 50.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 50.0, 20.0, 20.0, 10.0, 50.0, 1.0, 1.0, 1.0]
|
246 |
+
df_ultimatum_2_gpt4_male = choices_to_df(choices, hue='ChatGPT-4 Male')
|
247 |
+
|
248 |
+
choices = [40.0, 1.0, 1.0, 20.0, 1.0, 20.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 1.0, 20.0, 50.0, 10.0, 50.0, 1.0, 1.0, 20.0, 1.0, 50.0, 20.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 40.0]
|
249 |
+
df_ultimatum_2_gpt4_US = choices_to_df(choices, hue='ChatGPT-4 US')
|
250 |
+
|
251 |
+
choices = [1.0, 1.0, 20.0, 50.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 50.0, 1.0, 1.0, 1.0, 1.0]
|
252 |
+
df_ultimatum_2_gpt4_Poland = choices_to_df(choices, hue='ChatGPT-4 Poland')
|
253 |
+
|
254 |
+
choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 1.0, 20.0, 50.0, 0.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0]
|
255 |
+
df_ultimatum_2_gpt4_China = choices_to_df(choices, hue='ChatGPT-4 China')
|
256 |
+
|
257 |
+
choices = [1.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 40.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 20.0, 1.0, 50.0, 1.0, 50.0, 20.0, 1.0, 1.0, 50.0]
|
258 |
+
df_ultimatum_2_gpt4_UK = choices_to_df(choices, hue='ChatGPT-4 UK')
|
259 |
+
|
260 |
+
choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 10.0, 1.0, 40.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 50.0, 20.0, 20.0, 1.0, 1.0, 50.0, 20.0, 50.0, 50.0, 20.0, 1.0, 20.0, 50.0, 1]
|
261 |
+
df_ultimatum_2_gpt4_Columbia = choices_to_df(choices, hue='ChatGPT-4 Columbia')
|
262 |
+
|
263 |
+
choices = [50.0, 1.0, 50.0, 20.0, 20.0, 20.0, 50.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 50.0, 1.0, 20.0, 20.0, 50.0, 1.0, 50.0, 1.0, 40.0, 1.0, 20.0, 1.0, 20.0, 1.0, 1.0]
|
264 |
+
df_ultimatum_2_gpt4_under = choices_to_df(choices, hue='ChatGPT-4 Undergrad')
|
265 |
+
|
266 |
+
choices = [1.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 25.0, 20.0, 50.0, 20.0, 50.0, 50.0, 1.0, 50.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 20.0, 20.0]
|
267 |
+
df_ultimatum_2_gpt4_grad = choices_to_df(choices, hue='ChatGPT-4 Graduate')
|
268 |
+
|
269 |
+
df = df_ultimatum_1_human
|
270 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
271 |
+
|
272 |
+
# Calculate density as a percentage
|
273 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
274 |
+
|
275 |
+
# Create a DataFrame with the density percentages
|
276 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
277 |
+
|
278 |
+
# Create the bar chart using Altair
|
279 |
+
chart1 = alt.Chart(density_df).mark_bar().encode(
|
280 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
281 |
+
y='density:Q',
|
282 |
+
color=alt.value('steelblue'),
|
283 |
+
tooltip=['density']
|
284 |
+
).properties(
|
285 |
+
width=500,
|
286 |
+
title='Density of Choices'
|
287 |
+
).interactive()
|
288 |
+
|
289 |
+
df = df_ultimatum_1_gpt4
|
290 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
291 |
+
|
292 |
+
# Calculate density as a percentage
|
293 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
294 |
+
|
295 |
+
# Create a DataFrame with the density percentages
|
296 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
297 |
+
|
298 |
+
# Create the bar chart using Altair
|
299 |
+
chart2 = alt.Chart(density_df).mark_bar().encode(
|
300 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
301 |
+
y='density:Q',
|
302 |
+
color=alt.value('orange'),
|
303 |
+
tooltip=['density']
|
304 |
+
).properties(
|
305 |
+
width=500,
|
306 |
+
title='Density of Choices'
|
307 |
+
).interactive()
|
308 |
+
|
309 |
+
df = df_ultimatum_1_turbo
|
310 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
311 |
+
|
312 |
+
# Calculate density as a percentage
|
313 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
314 |
+
|
315 |
+
# Create a DataFrame with the density percentages
|
316 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
317 |
+
|
318 |
+
# Create the bar chart using Altair
|
319 |
+
chart3 = alt.Chart(density_df).mark_bar().encode(
|
320 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10)),
|
321 |
+
y='density:Q',
|
322 |
+
color=alt.value('green'),
|
323 |
+
tooltip=['density']
|
324 |
+
).properties(
|
325 |
+
width=500,
|
326 |
+
title='Density of Choices'
|
327 |
+
).interactive()
|
328 |
+
|
329 |
+
final2 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
330 |
+
|
331 |
+
#Plot 3 - - Ultimatum (Responder) (spite)
|
332 |
+
df = df_ultimatum_2_human
|
333 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
334 |
+
|
335 |
+
# Calculate density as a percentage
|
336 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
337 |
+
|
338 |
+
# Create a DataFrame with the density percentages
|
339 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
340 |
+
|
341 |
+
# Create the bar chart using Altair
|
342 |
+
chart1 = alt.Chart(density_df).mark_bar().encode(
|
343 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
344 |
+
y='density:Q',
|
345 |
+
color=alt.value('steelblue'),
|
346 |
+
tooltip=['density']
|
347 |
+
).properties(
|
348 |
+
width=500,
|
349 |
+
title='Density of Choices'
|
350 |
+
).interactive()
|
351 |
+
|
352 |
+
df = df_ultimatum_2_gpt4
|
353 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
354 |
+
|
355 |
+
# Calculate density as a percentage
|
356 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
357 |
+
|
358 |
+
# Create a DataFrame with the density percentages
|
359 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
360 |
+
|
361 |
+
# Create the bar chart using Altair
|
362 |
+
chart2 = alt.Chart(density_df).mark_bar().encode(
|
363 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
364 |
+
y='density:Q',
|
365 |
+
color=alt.value('orange'),
|
366 |
+
tooltip=['density']
|
367 |
+
).properties(
|
368 |
+
width=500,
|
369 |
+
title='Density of Choices'
|
370 |
+
).interactive()
|
371 |
+
|
372 |
+
df = df_ultimatum_2_turbo
|
373 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
374 |
+
|
375 |
+
# Calculate density as a percentage
|
376 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
377 |
+
|
378 |
+
# Create a DataFrame with the density percentages
|
379 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
380 |
+
|
381 |
+
# Create the bar chart using Altair
|
382 |
+
chart3 = alt.Chart(density_df).mark_bar().encode(
|
383 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
384 |
+
y='density:Q',
|
385 |
+
color=alt.value('green'),
|
386 |
+
tooltip=['density']
|
387 |
+
).properties(
|
388 |
+
width=500,
|
389 |
+
title='Density of Choices'
|
390 |
+
).interactive()
|
391 |
+
|
392 |
+
final3 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
393 |
+
|
394 |
+
#Plot 4 - - Trust (as Investor) (trust)
|
395 |
+
binrange = (0, 100)
|
396 |
+
moves_1 = []
|
397 |
+
moves_2 = defaultdict(list)
|
398 |
+
with open('trust_investment.csv', 'r') as f:
|
399 |
+
reader = csv.reader(f)
|
400 |
+
header = next(reader)
|
401 |
+
col2idx = {col: idx for idx, col in enumerate(header)}
|
402 |
+
for row in reader:
|
403 |
+
record = {col: row[idx] for col, idx in col2idx.items()}
|
404 |
+
|
405 |
+
# if record['Role'] != 'first': continue
|
406 |
+
if int(record['Round']) > 1: continue
|
407 |
+
# if int(record['Total']) != 100: continue
|
408 |
+
if record['move'] == 'None': continue
|
409 |
+
if record['gameType'] != 'trust_investment': continue
|
410 |
+
|
411 |
+
if record['Role'] == 'first':
|
412 |
+
move = float(record['move'])
|
413 |
+
if move < binrange[0] or \
|
414 |
+
move > binrange[1]: continue
|
415 |
+
moves_1.append(move)
|
416 |
+
elif record['Role'] == 'second':
|
417 |
+
inv, ret = eval(record['roundResult'])
|
418 |
+
if ret < 0 or \
|
419 |
+
ret > inv * 3: continue
|
420 |
+
moves_2[inv].append(ret)
|
421 |
+
else: continue
|
422 |
+
|
423 |
+
df_trust_1_human = choices_to_df(moves_1, 'Human')
|
424 |
+
df_trust_2_human = choices_to_df(moves_2[10], 'Human')
|
425 |
+
df_trust_3_human = choices_to_df(moves_2[50], 'Human')
|
426 |
+
df_trust_4_human = choices_to_df(moves_2[100], 'Human')
|
427 |
+
|
428 |
+
choices = [50.0, 50.0, 40.0, 30.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0, 50.0, 30.0, 30.0, 50.0, 50.0, 50.0, 40.0, 40.0, 50.0, 50.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0]
|
429 |
+
df_trust_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
430 |
+
|
431 |
+
choices = [50.0, 50.0, 30.0, 30.0, 30.0, 60.0, 50.0, 40.0, 20.0, 20.0, 50.0, 40.0, 30.0, 20.0, 30.0, 20.0, 30.0, 60.0, 50.0, 30.0, 50.0, 20.0, 20.0, 30.0, 50.0, 30.0, 30.0, 50.0, 40.0] + [30]
|
432 |
+
df_trust_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
433 |
+
|
434 |
+
choices = [20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 20.0, 15.0, 15.0, 15.0, 15.0, 15.0, 20.0, 20.0, 15.0]
|
435 |
+
df_trust_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
436 |
+
|
437 |
+
choices = [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 25.0, 30.0, 30.0, 20.0, 25.0, 30.0, 20.0, 20.0, 18.0] + [20, 20, 20, 25, 25, 25, 30]
|
438 |
+
df_trust_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
439 |
+
|
440 |
+
choices = [100.0, 75.0, 75.0, 75.0, 75.0, 75.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0, 75.0, 75.0, 100.0, 100.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0]
|
441 |
+
df_trust_3_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
442 |
+
|
443 |
+
choices = [150.0, 100.0, 150.0, 150.0, 50.0, 150.0, 100.0, 150.0, 100.0, 100.0, 100.0, 150.0] + [100, 100, 100, 100, 100, 100, 100, 100]
|
444 |
+
df_trust_3_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
445 |
+
|
446 |
+
choices = [200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0]
|
447 |
+
df_trust_4_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
448 |
+
|
449 |
+
choices = [225.0, 225.0, 300.0, 300.0, 220.0, 300.0, 250.0] + [200, 200, 250, 200, 200]
|
450 |
+
df_trust_4_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
451 |
+
|
452 |
+
df = df_trust_1_human
|
453 |
+
|
454 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
455 |
+
|
456 |
+
# Calculate density as a percentage
|
457 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
458 |
+
|
459 |
+
# Create a DataFrame with the density percentages
|
460 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
461 |
+
|
462 |
+
# Create the bar chart using Altair
|
463 |
+
chart1 = alt.Chart(density_df).mark_bar().encode(
|
464 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
465 |
+
y='density:Q',
|
466 |
+
color=alt.value('steelblue'),
|
467 |
+
tooltip=['density']
|
468 |
+
).properties(
|
469 |
+
width=500,
|
470 |
+
title='Density of Choices'
|
471 |
+
).interactive()
|
472 |
+
|
473 |
+
|
474 |
+
|
475 |
+
df = df_trust_1_gpt4
|
476 |
+
|
477 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
478 |
+
|
479 |
+
# Calculate density as a percentage
|
480 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
481 |
+
|
482 |
+
# Create a DataFrame with the density percentages
|
483 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
484 |
+
|
485 |
+
# Create the bar chart using Altair
|
486 |
+
chart2 = alt.Chart(density_df).mark_bar().encode(
|
487 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
488 |
+
y='density:Q',
|
489 |
+
color=alt.value('orange'),
|
490 |
+
tooltip=['density']
|
491 |
+
).properties(
|
492 |
+
width=500,
|
493 |
+
title='Density of Choices'
|
494 |
+
).interactive()
|
495 |
+
|
496 |
+
|
497 |
+
df = df_trust_1_turbo
|
498 |
+
|
499 |
+
bin_ranges = [0, 10, 30, 50, 70]
|
500 |
+
|
501 |
+
# Calculate density as a percentage
|
502 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
503 |
+
|
504 |
+
# Create a DataFrame with the density percentages
|
505 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
506 |
+
|
507 |
+
# Create the bar chart using Altair
|
508 |
+
chart3 = alt.Chart(density_df).mark_bar().encode(
|
509 |
+
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
510 |
+
y='density:Q',
|
511 |
+
color=alt.value('green'),
|
512 |
+
tooltip=['density']
|
513 |
+
).properties(
|
514 |
+
width=500,
|
515 |
+
title='Density of Choices'
|
516 |
+
).interactive()
|
517 |
|
|
|
|
|
518 |
|
519 |
+
final4 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
520 |
+
|
521 |
+
#Plot 5 - Trust (as Banker) (fairness, altruism, reciprocity)
|
522 |
+
df = df_trust_3_human
|
523 |
+
|
524 |
+
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
525 |
+
|
526 |
+
custom_ticks = [2, 6, 10, 14, 18]
|
527 |
+
|
528 |
+
# Calculate density as a percentage
|
529 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
530 |
+
|
531 |
+
# Create a DataFrame with the density percentages
|
532 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
533 |
+
|
534 |
+
# Create the bar chart using Altair
|
535 |
+
chart1 = alt.Chart(density_df).mark_bar().encode(
|
536 |
+
x=alt.X('choices:O', bin=alt.Bin(step=10), axis=None),
|
537 |
+
y='density:Q',
|
538 |
+
color=alt.value('steelblue')
|
539 |
+
).properties(
|
540 |
+
width=500,
|
541 |
+
title='Density of Choices'
|
542 |
+
).interactive()
|
543 |
+
|
544 |
+
|
545 |
+
|
546 |
+
df = df_trust_3_gpt4
|
547 |
+
|
548 |
+
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
549 |
+
|
550 |
+
# Calculate density as a percentage
|
551 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
552 |
+
|
553 |
+
# Create a DataFrame with the density percentages
|
554 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
555 |
+
|
556 |
+
# Create the bar chart using Altair
|
557 |
+
chart2 = alt.Chart(density_df).mark_bar().encode(
|
558 |
+
x=alt.X('choices:O', bin=alt.Bin(step=10), axis=None),
|
559 |
+
y='density:Q',
|
560 |
+
color=alt.value('orange')
|
561 |
+
).properties(
|
562 |
+
width=500,
|
563 |
+
title='Density of Choices'
|
564 |
+
).interactive()
|
565 |
+
|
566 |
+
|
567 |
+
df = df_trust_3_turbo
|
568 |
+
|
569 |
+
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
570 |
+
|
571 |
+
# Calculate density as a percentage
|
572 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
573 |
+
|
574 |
+
# Create a DataFrame with the density percentages
|
575 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
576 |
+
|
577 |
+
# Create the bar chart using Altair
|
578 |
+
chart3 = alt.Chart(density_df).mark_bar().encode(
|
579 |
+
x=alt.X('choices:O', bin=alt.Bin(step=10)),
|
580 |
+
y='density:Q',
|
581 |
+
color=alt.value('green')
|
582 |
+
).properties(
|
583 |
+
width=500,
|
584 |
+
title='Density of Choices'
|
585 |
+
).interactive()
|
586 |
+
|
587 |
+
# chart1
|
588 |
+
final5 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
589 |
+
|
590 |
+
#Plot 6 - Public Goods (Free-Riding, altruism, cooperation)
|
591 |
+
df = pd.read_csv('public_goods_linear_water.csv')
|
592 |
+
df = df[df['Role'] == 'contributor']
|
593 |
+
df = df[df['Round'] <= 3]
|
594 |
+
df = df[df['Total'] == 20]
|
595 |
+
df = df[df['groupSize'] == 4]
|
596 |
+
df = df[df['move'] != None]
|
597 |
+
df = df[(df['move'] >= 0) & (df['move'] <= 20)]
|
598 |
+
df = df[df['gameType'] == 'public_goods_linear_water']
|
599 |
+
|
600 |
+
round_1 = df[df['Round'] == 1]['move']
|
601 |
+
round_2 = df[df['Round'] == 2]['move']
|
602 |
+
round_3 = df[df['Round'] == 3]['move']
|
603 |
+
print(len(round_1), len(round_2), len(round_3))
|
604 |
+
df_PG_human = pd.DataFrame({
|
605 |
+
'choices': list(round_1)
|
606 |
+
})
|
607 |
+
df_PG_human['hue'] = 'Human'
|
608 |
+
# df_PG_human
|
609 |
+
|
610 |
+
file_names = [
|
611 |
+
'PG_basic_turbo_2023_05_09-02_49_09_AM.json',
|
612 |
+
'PG_basic_turbo_loss_2023_05_09-03_59_49_AM.json',
|
613 |
+
'PG_basic_gpt4_2023_05_09-11_15_42_PM.json',
|
614 |
+
'PG_basic_gpt4_loss_2023_05_09-10_44_38_PM.json',
|
615 |
+
]
|
616 |
+
|
617 |
+
choices = []
|
618 |
+
for file_name in file_names:
|
619 |
+
with open(file_name, 'r') as f:
|
620 |
+
choices += json.load(f)['choices']
|
621 |
+
choices_baseline = choices
|
622 |
+
|
623 |
+
choices = [tuple(x)[0] for x in choices]
|
624 |
+
df_PG_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
625 |
+
# df_PG_turbo.head()
|
626 |
+
df_PG_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
627 |
+
# df_PG_gpt4.head()
|
628 |
+
|
629 |
+
df = df_PG_human
|
630 |
+
|
631 |
+
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
632 |
+
|
633 |
+
custom_ticks = [2, 6, 10, 14, 18]
|
634 |
+
|
635 |
+
# Calculate density as a percentage
|
636 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
637 |
+
|
638 |
+
# Create a DataFrame with the density percentages
|
639 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
640 |
+
|
641 |
+
# Create the bar chart using Altair
|
642 |
+
chart1 = alt.Chart(density_df).mark_bar().encode(
|
643 |
+
x=alt.X('choices:O', bin=alt.Bin(step=2), axis=None),
|
644 |
+
y='density:Q',
|
645 |
+
color=alt.value('steelblue'),
|
646 |
+
tooltip=['density']
|
647 |
+
).properties(
|
648 |
+
width=500,
|
649 |
+
title='Density of Choices'
|
650 |
+
).interactive()
|
651 |
+
|
652 |
+
|
653 |
+
|
654 |
+
df = df_PG_gpt4
|
655 |
+
|
656 |
+
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
657 |
+
|
658 |
+
# Calculate density as a percentage
|
659 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
660 |
+
|
661 |
+
# Create a DataFrame with the density percentages
|
662 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
663 |
+
|
664 |
+
# Create the bar chart using Altair
|
665 |
+
chart2 = alt.Chart(density_df).mark_bar().encode(
|
666 |
+
x=alt.X('choices:O', bin=alt.Bin(step=2), axis=None),
|
667 |
+
y='density:Q',
|
668 |
+
color=alt.value('orange'),
|
669 |
+
tooltip=['density']
|
670 |
+
).properties(
|
671 |
+
width=500,
|
672 |
+
title='Density of Choices'
|
673 |
+
).interactive()
|
674 |
+
|
675 |
+
|
676 |
+
df = df_PG_turbo
|
677 |
+
|
678 |
+
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
679 |
+
|
680 |
+
# Calculate density as a percentage
|
681 |
+
density_percentage = df['choices'].value_counts(normalize=True)
|
682 |
+
|
683 |
+
# Create a DataFrame with the density percentages
|
684 |
+
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
685 |
+
|
686 |
+
# Create the bar chart using Altair
|
687 |
+
chart3 = alt.Chart(density_df).mark_bar().encode(
|
688 |
+
x=alt.X('choices:O', bin=alt.Bin(step=2)),
|
689 |
+
y='density:Q',
|
690 |
+
color=alt.value('green'),
|
691 |
+
tooltip=['density']
|
692 |
+
).properties(
|
693 |
+
width=500,
|
694 |
+
title='Density of Choices'
|
695 |
+
).interactive()
|
696 |
|
697 |
+
# chart1
|
698 |
+
final6 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
699 |
|
700 |
+
#Final_Final
|
701 |
+
final_final = (final | final2 | final3 ) & (final4 | final5 | final6)
|
|
|
|
|
|
|
702 |
|
703 |
+
#Dashboard
|
704 |
+
import panel as pn
|
705 |
+
import vega_datasets
|
|
|
|
|
706 |
|
707 |
+
# Enable Panel extensions
|
708 |
+
pn.extension(design='bootstrap')
|
709 |
+
pn.extension('vega')
|
710 |
+
|
711 |
+
template = pn.template.BootstrapTemplate(
|
712 |
+
title='SI649 Project2',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
713 |
)
|
714 |
|
715 |
+
# the main column will hold our key content
|
716 |
+
maincol = pn.Column()
|
717 |
+
|
718 |
+
options1 = ['ALL', 'Choose Your Own', 'Based On Category']
|
719 |
+
select0 = pn.widgets.Select(options=options1, name='Choose what to compare')
|
720 |
+
# maincol.append(select0)
|
721 |
+
|
722 |
+
# Charts
|
723 |
+
charts = []
|
724 |
+
charts.append(final)
|
725 |
+
charts.append(final2)
|
726 |
+
charts.append(final3)
|
727 |
+
charts.append(final4)
|
728 |
+
charts.append(final5)
|
729 |
+
charts.append(final6)
|
730 |
+
|
731 |
+
# Define options for dropdown
|
732 |
+
options = [f'Chart {i+1}' for i in range(len(charts))]
|
733 |
+
|
734 |
+
# Panel widgets
|
735 |
+
select1 = pn.widgets.Select(options=options, name='Select Chart 1')
|
736 |
+
select2 = pn.widgets.Select(options=options, name='Select Chart 2')
|
737 |
+
|
738 |
+
options = ['Altruism', 'Fairness', 'spite', 'trust', 'reciprocity', 'free-riding', 'cooperation']
|
739 |
+
select_widget = pn.widgets.Select(options=options, name='Select a category')
|
740 |
+
|
741 |
+
|
742 |
+
# Define function to update chart
|
743 |
+
def update_chart(value):
|
744 |
+
if value:
|
745 |
+
index = int(value.split()[-1]) - 1
|
746 |
+
return charts[index]
|
747 |
+
else:
|
748 |
+
return None
|
749 |
+
|
750 |
+
# Combine dropdown and chart
|
751 |
+
@pn.depends(select1.param.value, select2.param.value)
|
752 |
+
def update_plots(value1, value2):
|
753 |
+
selected_chart1 = update_chart(value1)
|
754 |
+
selected_chart2 = update_chart(value2)
|
755 |
+
if selected_chart1 and selected_chart2:
|
756 |
+
return pn.Row(selected_chart1, selected_chart2)
|
757 |
+
elif selected_chart1:
|
758 |
+
return selected_chart1
|
759 |
+
elif selected_chart2:
|
760 |
+
return selected_chart2
|
761 |
+
else:
|
762 |
+
return None
|
763 |
+
|
764 |
+
# Define functions for each category
|
765 |
+
def update_plots_altruism():
|
766 |
+
return pn.Row(final, final5)
|
767 |
+
|
768 |
+
def update_plots_fairness():
|
769 |
+
return pn.Row(final2, final5)
|
770 |
+
|
771 |
+
def update_plots_spite():
|
772 |
+
return final
|
773 |
+
|
774 |
+
def update_plots_trust():
|
775 |
+
return final4
|
776 |
+
|
777 |
+
def update_plots_reciprocity():
|
778 |
+
return final5
|
779 |
+
|
780 |
+
def update_plots_freeriding():
|
781 |
+
return final6
|
782 |
+
|
783 |
+
def update_plots_cooperation():
|
784 |
+
return final6
|
785 |
+
|
786 |
+
# Define a dictionary to map categories to update functions
|
787 |
+
update_functions = {
|
788 |
+
'Altruism': update_plots_altruism,
|
789 |
+
'Fairness': update_plots_fairness,
|
790 |
+
'spite': update_plots_spite,
|
791 |
+
'trust': update_plots_trust,
|
792 |
+
'reciprocity': update_plots_reciprocity,
|
793 |
+
'freeriding': update_plots_freeriding,
|
794 |
+
'cooperation': update_plots_cooperation
|
795 |
+
}
|
796 |
+
|
797 |
+
|
798 |
+
# # Define function to update chart based on selected category
|
799 |
+
# def update_plots_category(event):
|
800 |
+
# selected_category = event.new
|
801 |
+
# maincol.clear() # Clear existing content in main column
|
802 |
+
|
803 |
+
# if selected_category in update_functions:
|
804 |
+
# update_function = update_functions[selected_category]
|
805 |
+
# maincol.append(update_function())
|
806 |
+
# else:
|
807 |
+
# maincol.append(pn.pane.Markdown(f"No update function found for category: {selected_category}"))
|
808 |
+
|
809 |
+
# Define function to update chart based on selected category
|
810 |
+
def update_plots_category(event):
|
811 |
+
selected_category = event.new
|
812 |
+
maincol.clear() # Clear existing content in main column
|
813 |
+
|
814 |
+
if selected_category in update_functions:
|
815 |
+
update_function = update_functions[selected_category]
|
816 |
+
maincol.append(update_function())
|
817 |
+
else:
|
818 |
+
maincol.append(pn.pane.Markdown(f"No update function found for category: {selected_category}"))
|
819 |
+
|
820 |
+
# Append select_widget again to allow changing the category selection
|
821 |
+
maincol.append(select_widget)
|
822 |
+
|
823 |
+
|
824 |
+
# Callback function to handle select widget events
|
825 |
+
def select_callback(event):
|
826 |
+
selected_value = event.new
|
827 |
+
maincol.clear() # Clear existing content in main column
|
828 |
+
|
829 |
+
if selected_value == 'Choose Your Own':
|
830 |
+
maincol.append(select1)
|
831 |
+
maincol.append(select2)
|
832 |
+
maincol.append(update_plots)
|
833 |
+
|
834 |
+
elif selected_value == 'Based On Category':
|
835 |
+
maincol.append(select_widget)
|
836 |
+
select_widget.param.watch(update_plots_category, 'value')
|
837 |
+
|
838 |
+
# # Bind the update_plots_category function to the select widget's 'value' parameter
|
839 |
+
# select.param.watch
|
840 |
+
# maincol.append(update_plots_category())
|
841 |
+
|
842 |
+
# Bind the callback function to the select widget's 'value' parameter
|
843 |
+
select0.param.watch(select_callback, 'value')
|
844 |
+
|
845 |
+
maincol.append(select0)
|
846 |
+
|
847 |
+
template.main.append(maincol)
|
848 |
+
template.servable()
|