Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,688 +17,688 @@ from matplotlib.colors import ListedColormap
|
|
17 |
import panel as pn
|
18 |
import altair as alt
|
19 |
|
20 |
-
def choices_to_df(choices, hue):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
binrange = (0, 100)
|
27 |
-
moves = []
|
28 |
-
with open('dictator.csv', 'r') as f:
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
df_dictator_human = choices_to_df(moves, 'Human')
|
48 |
-
|
49 |
-
choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
|
50 |
-
df_dictator_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
51 |
-
|
52 |
-
choices = [25, 35, 70, 30, 20, 25, 40, 80, 30, 30, 40, 30, 30, 30, 30, 30, 40, 40, 30, 30, 40, 30, 60, 20, 40, 25, 30, 30, 30]
|
53 |
-
df_dictator_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
54 |
-
|
55 |
-
def extract_choices(recrods):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
def extract_amout(
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
):
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
records = json.load(open('dictator_wo_ex_2023_03_13-11_24_07_PM.json', 'r'))
|
92 |
-
choices = extract_choices(records)
|
93 |
-
|
94 |
-
# Plot 1 - Dictator (altruism)
|
95 |
-
def plot_facet(
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
):
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
df = df_dictator_human
|
153 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
154 |
-
|
155 |
-
# Calculate density as a percentage
|
156 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
157 |
-
|
158 |
-
# Create a DataFrame with the density percentages
|
159 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
160 |
-
|
161 |
-
# Create the bar chart using Altair
|
162 |
-
chart1 = alt.Chart(density_df).mark_bar().encode(
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
).properties(
|
168 |
-
|
169 |
-
|
170 |
-
).interactive()
|
171 |
|
172 |
-
df = df_dictator_gpt4
|
173 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
174 |
|
175 |
-
# Calculate density as a percentage
|
176 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
177 |
|
178 |
-
# Create a DataFrame with the density percentages
|
179 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
180 |
|
181 |
-
# Create the bar chart using Altair
|
182 |
-
chart2 = alt.Chart(density_df).mark_bar().encode(
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
).properties(
|
188 |
-
|
189 |
-
|
190 |
-
).interactive()
|
191 |
|
192 |
-
df = df_dictator_turbo
|
193 |
-
|
194 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
195 |
|
196 |
-
# Calculate density as a percentage
|
197 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
198 |
|
199 |
-
# Create a DataFrame with the density percentages
|
200 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
201 |
-
|
202 |
-
# Create the bar chart using Altair
|
203 |
-
chart3 = alt.Chart(density_df).mark_bar().encode(
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
).properties(
|
209 |
-
|
210 |
-
|
211 |
-
).interactive()
|
212 |
-
|
213 |
-
final = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
214 |
-
|
215 |
-
#Plot 2 - - Ultimatum (Fairness)
|
216 |
-
df = pd.read_csv('ultimatum_strategy.csv')
|
217 |
-
df = df[df['gameType'] == 'ultimatum_strategy']
|
218 |
-
df = df[df['Role'] == 'player']
|
219 |
-
df = df[df['Round'] == 1]
|
220 |
-
df = df[df['Total'] == 100]
|
221 |
-
df = df[df['move'] != 'None']
|
222 |
-
df['propose'] = df['move'].apply(lambda x: eval(x)[0])
|
223 |
-
df['accept'] = df['move'].apply(lambda x: eval(x)[1])
|
224 |
-
df = df[(df['propose'] >= 0) & (df['propose'] <= 100)]
|
225 |
-
df = df[(df['accept'] >= 0) & (df['accept'] <= 100)]
|
226 |
-
|
227 |
-
df_ultimatum_1_human = choices_to_df(list(df['propose']), 'Human')
|
228 |
-
df_ultimatum_2_human = choices_to_df(list(df['accept']), 'Human')
|
229 |
-
|
230 |
-
choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
|
231 |
-
df_ultimatum_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
232 |
-
|
233 |
-
choices = [40, 40, 40, 30, 70, 70, 50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 30, 30, 35, 50, 40, 70, 40, 60, 60, 70, 40, 50]
|
234 |
-
df_ultimatum_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
235 |
-
|
236 |
-
choices = [50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 25.0, 50.0, 1.0, 1.0, 20.0, 50.0, 50.0, 50.0, 20.0, 50.0, 1.0, 1.0, 1.0, 50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0] + [0, 1]
|
237 |
-
df_ultimatum_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
238 |
-
|
239 |
-
choices = [None, 50, 50, 50, 50, 30, None, None, 30, 33.33, 40, None, 50, 40, None, 1, 30, None, 10, 50, 30, 10, 30, None, 30, None, 10, 30, 30, 30]
|
240 |
-
df_ultimatum_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
241 |
-
|
242 |
-
choices = [50.0, 50.0, 10.0, 40.0, 20.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 50.0, 20.0, 10.0, 50.0, 20.0, 1.0, 1.0, 50.0, 1.0, 20.0, 1.0, 50.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 50.0]
|
243 |
-
df_ultimatum_2_gpt4_female = choices_to_df(choices, hue='ChatGPT-4 Female')
|
244 |
-
|
245 |
-
choices = [1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 50.0, 50.0, 20.0, 20.0, 1.0, 50.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 50.0, 20.0, 20.0, 10.0, 50.0, 1.0, 1.0, 1.0]
|
246 |
-
df_ultimatum_2_gpt4_male = choices_to_df(choices, hue='ChatGPT-4 Male')
|
247 |
-
|
248 |
-
choices = [40.0, 1.0, 1.0, 20.0, 1.0, 20.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 1.0, 20.0, 50.0, 10.0, 50.0, 1.0, 1.0, 20.0, 1.0, 50.0, 20.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 40.0]
|
249 |
-
df_ultimatum_2_gpt4_US = choices_to_df(choices, hue='ChatGPT-4 US')
|
250 |
-
|
251 |
-
choices = [1.0, 1.0, 20.0, 50.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 50.0, 1.0, 1.0, 1.0, 1.0]
|
252 |
-
df_ultimatum_2_gpt4_Poland = choices_to_df(choices, hue='ChatGPT-4 Poland')
|
253 |
-
|
254 |
-
choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 1.0, 20.0, 50.0, 0.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0]
|
255 |
-
df_ultimatum_2_gpt4_China = choices_to_df(choices, hue='ChatGPT-4 China')
|
256 |
-
|
257 |
-
choices = [1.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 40.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 20.0, 1.0, 50.0, 1.0, 50.0, 20.0, 1.0, 1.0, 50.0]
|
258 |
-
df_ultimatum_2_gpt4_UK = choices_to_df(choices, hue='ChatGPT-4 UK')
|
259 |
-
|
260 |
-
choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 10.0, 1.0, 40.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 50.0, 20.0, 20.0, 1.0, 1.0, 50.0, 20.0, 50.0, 50.0, 20.0, 1.0, 20.0, 50.0, 1]
|
261 |
-
df_ultimatum_2_gpt4_Columbia = choices_to_df(choices, hue='ChatGPT-4 Columbia')
|
262 |
-
|
263 |
-
choices = [50.0, 1.0, 50.0, 20.0, 20.0, 20.0, 50.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 50.0, 1.0, 20.0, 20.0, 50.0, 1.0, 50.0, 1.0, 40.0, 1.0, 20.0, 1.0, 20.0, 1.0, 1.0]
|
264 |
-
df_ultimatum_2_gpt4_under = choices_to_df(choices, hue='ChatGPT-4 Undergrad')
|
265 |
-
|
266 |
-
choices = [1.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 25.0, 20.0, 50.0, 20.0, 50.0, 50.0, 1.0, 50.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 20.0, 20.0]
|
267 |
-
df_ultimatum_2_gpt4_grad = choices_to_df(choices, hue='ChatGPT-4 Graduate')
|
268 |
-
|
269 |
-
df = df_ultimatum_1_human
|
270 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
271 |
-
|
272 |
-
# Calculate density as a percentage
|
273 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
274 |
-
|
275 |
-
# Create a DataFrame with the density percentages
|
276 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
277 |
-
|
278 |
-
# Create the bar chart using Altair
|
279 |
-
chart1 = alt.Chart(density_df).mark_bar().encode(
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
).properties(
|
285 |
-
|
286 |
-
|
287 |
-
).interactive()
|
288 |
-
|
289 |
-
df = df_ultimatum_1_gpt4
|
290 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
291 |
-
|
292 |
-
# Calculate density as a percentage
|
293 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
294 |
-
|
295 |
-
# Create a DataFrame with the density percentages
|
296 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
297 |
-
|
298 |
-
# Create the bar chart using Altair
|
299 |
-
chart2 = alt.Chart(density_df).mark_bar().encode(
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
).properties(
|
305 |
-
|
306 |
-
|
307 |
-
).interactive()
|
308 |
-
|
309 |
-
df = df_ultimatum_1_turbo
|
310 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
311 |
-
|
312 |
-
# Calculate density as a percentage
|
313 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
314 |
-
|
315 |
-
# Create a DataFrame with the density percentages
|
316 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
317 |
-
|
318 |
-
# Create the bar chart using Altair
|
319 |
-
chart3 = alt.Chart(density_df).mark_bar().encode(
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
).properties(
|
325 |
-
|
326 |
-
|
327 |
-
).interactive()
|
328 |
-
|
329 |
-
final2 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
330 |
-
|
331 |
-
#Plot 3 - - Ultimatum (Responder) (spite)
|
332 |
-
df = df_ultimatum_2_human
|
333 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
334 |
-
|
335 |
-
# Calculate density as a percentage
|
336 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
337 |
-
|
338 |
-
# Create a DataFrame with the density percentages
|
339 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
340 |
-
|
341 |
-
# Create the bar chart using Altair
|
342 |
-
chart1 = alt.Chart(density_df).mark_bar().encode(
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
).properties(
|
348 |
-
|
349 |
-
|
350 |
-
).interactive()
|
351 |
-
|
352 |
-
df = df_ultimatum_2_gpt4
|
353 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
354 |
-
|
355 |
-
# Calculate density as a percentage
|
356 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
357 |
-
|
358 |
-
# Create a DataFrame with the density percentages
|
359 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
360 |
-
|
361 |
-
# Create the bar chart using Altair
|
362 |
-
chart2 = alt.Chart(density_df).mark_bar().encode(
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
).properties(
|
368 |
-
|
369 |
-
|
370 |
-
).interactive()
|
371 |
-
|
372 |
-
df = df_ultimatum_2_turbo
|
373 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
374 |
-
|
375 |
-
# Calculate density as a percentage
|
376 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
377 |
-
|
378 |
-
# Create a DataFrame with the density percentages
|
379 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
380 |
-
|
381 |
-
# Create the bar chart using Altair
|
382 |
-
chart3 = alt.Chart(density_df).mark_bar().encode(
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
).properties(
|
388 |
-
|
389 |
-
|
390 |
-
).interactive()
|
391 |
-
|
392 |
-
final3 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
393 |
-
|
394 |
-
#Plot 4 - - Trust (as Investor) (trust)
|
395 |
-
binrange = (0, 100)
|
396 |
-
moves_1 = []
|
397 |
-
moves_2 = defaultdict(list)
|
398 |
-
with open('trust_investment.csv', 'r') as f:
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
df_trust_1_human = choices_to_df(moves_1, 'Human')
|
424 |
-
df_trust_2_human = choices_to_df(moves_2[10], 'Human')
|
425 |
-
df_trust_3_human = choices_to_df(moves_2[50], 'Human')
|
426 |
-
df_trust_4_human = choices_to_df(moves_2[100], 'Human')
|
427 |
-
|
428 |
-
choices = [50.0, 50.0, 40.0, 30.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0, 50.0, 30.0, 30.0, 50.0, 50.0, 50.0, 40.0, 40.0, 50.0, 50.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0]
|
429 |
-
df_trust_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
430 |
-
|
431 |
-
choices = [50.0, 50.0, 30.0, 30.0, 30.0, 60.0, 50.0, 40.0, 20.0, 20.0, 50.0, 40.0, 30.0, 20.0, 30.0, 20.0, 30.0, 60.0, 50.0, 30.0, 50.0, 20.0, 20.0, 30.0, 50.0, 30.0, 30.0, 50.0, 40.0] + [30]
|
432 |
-
df_trust_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
433 |
-
|
434 |
-
choices = [20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 20.0, 15.0, 15.0, 15.0, 15.0, 15.0, 20.0, 20.0, 15.0]
|
435 |
-
df_trust_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
436 |
-
|
437 |
-
choices = [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 25.0, 30.0, 30.0, 20.0, 25.0, 30.0, 20.0, 20.0, 18.0] + [20, 20, 20, 25, 25, 25, 30]
|
438 |
-
df_trust_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
439 |
-
|
440 |
-
choices = [100.0, 75.0, 75.0, 75.0, 75.0, 75.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0, 75.0, 75.0, 100.0, 100.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0]
|
441 |
-
df_trust_3_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
442 |
-
|
443 |
-
choices = [150.0, 100.0, 150.0, 150.0, 50.0, 150.0, 100.0, 150.0, 100.0, 100.0, 100.0, 150.0] + [100, 100, 100, 100, 100, 100, 100, 100]
|
444 |
-
df_trust_3_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
445 |
-
|
446 |
-
choices = [200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0]
|
447 |
-
df_trust_4_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
448 |
-
|
449 |
-
choices = [225.0, 225.0, 300.0, 300.0, 220.0, 300.0, 250.0] + [200, 200, 250, 200, 200]
|
450 |
-
df_trust_4_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
451 |
-
|
452 |
-
df = df_trust_1_human
|
453 |
-
|
454 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
455 |
-
|
456 |
-
# Calculate density as a percentage
|
457 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
458 |
-
|
459 |
-
# Create a DataFrame with the density percentages
|
460 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
461 |
-
|
462 |
-
# Create the bar chart using Altair
|
463 |
-
chart1 = alt.Chart(density_df).mark_bar().encode(
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
).properties(
|
469 |
-
|
470 |
-
|
471 |
-
).interactive()
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
df = df_trust_1_gpt4
|
476 |
-
|
477 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
478 |
-
|
479 |
-
# Calculate density as a percentage
|
480 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
481 |
-
|
482 |
-
# Create a DataFrame with the density percentages
|
483 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
484 |
-
|
485 |
-
# Create the bar chart using Altair
|
486 |
-
chart2 = alt.Chart(density_df).mark_bar().encode(
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
).properties(
|
492 |
-
|
493 |
-
|
494 |
-
).interactive()
|
495 |
-
|
496 |
-
|
497 |
-
df = df_trust_1_turbo
|
498 |
|
499 |
-
bin_ranges = [0, 10, 30, 50, 70]
|
500 |
|
501 |
-
# Calculate density as a percentage
|
502 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
503 |
|
504 |
-
# Create a DataFrame with the density percentages
|
505 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
506 |
|
507 |
-
# Create the bar chart using Altair
|
508 |
-
chart3 = alt.Chart(density_df).mark_bar().encode(
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
).properties(
|
514 |
-
|
515 |
-
|
516 |
-
).interactive()
|
517 |
|
518 |
|
519 |
-
final4 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
520 |
-
|
521 |
-
#Plot 5 - Trust (as Banker) (fairness, altruism, reciprocity)
|
522 |
-
df = df_trust_3_human
|
523 |
-
|
524 |
-
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
525 |
-
|
526 |
-
custom_ticks = [2, 6, 10, 14, 18]
|
527 |
-
|
528 |
-
# Calculate density as a percentage
|
529 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
530 |
-
|
531 |
-
# Create a DataFrame with the density percentages
|
532 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
533 |
|
534 |
-
# Create the bar chart using Altair
|
535 |
-
chart1 = alt.Chart(density_df).mark_bar().encode(
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
).properties(
|
540 |
-
|
541 |
-
|
542 |
-
).interactive()
|
543 |
|
544 |
|
545 |
|
546 |
-
df = df_trust_3_gpt4
|
547 |
-
|
548 |
-
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
549 |
-
|
550 |
-
# Calculate density as a percentage
|
551 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
552 |
|
553 |
-
# Create a DataFrame with the density percentages
|
554 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
555 |
|
556 |
-
# Create the bar chart using Altair
|
557 |
-
chart2 = alt.Chart(density_df).mark_bar().encode(
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
).properties(
|
562 |
-
|
563 |
-
|
564 |
-
).interactive()
|
565 |
|
566 |
|
567 |
-
df = df_trust_3_turbo
|
568 |
|
569 |
-
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
570 |
|
571 |
-
# Calculate density as a percentage
|
572 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
573 |
|
574 |
-
# Create a DataFrame with the density percentages
|
575 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
576 |
|
577 |
-
# Create the bar chart using Altair
|
578 |
-
chart3 = alt.Chart(density_df).mark_bar().encode(
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
).properties(
|
583 |
-
|
584 |
-
|
585 |
-
).interactive()
|
586 |
|
587 |
-
# chart1
|
588 |
-
final5 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
589 |
|
590 |
-
#Plot 6 - Public Goods (Free-Riding, altruism, cooperation)
|
591 |
-
df = pd.read_csv('public_goods_linear_water.csv')
|
592 |
-
df = df[df['Role'] == 'contributor']
|
593 |
-
df = df[df['Round'] <= 3]
|
594 |
-
df = df[df['Total'] == 20]
|
595 |
-
df = df[df['groupSize'] == 4]
|
596 |
-
df = df[df['move'] != None]
|
597 |
-
df = df[(df['move'] >= 0) & (df['move'] <= 20)]
|
598 |
-
df = df[df['gameType'] == 'public_goods_linear_water']
|
599 |
|
600 |
-
round_1 = df[df['Round'] == 1]['move']
|
601 |
-
round_2 = df[df['Round'] == 2]['move']
|
602 |
-
round_3 = df[df['Round'] == 3]['move']
|
603 |
-
print(len(round_1), len(round_2), len(round_3))
|
604 |
-
df_PG_human = pd.DataFrame({
|
605 |
-
|
606 |
-
})
|
607 |
-
df_PG_human['hue'] = 'Human'
|
608 |
-
# df_PG_human
|
609 |
|
610 |
-
file_names = [
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
]
|
616 |
|
617 |
-
choices = []
|
618 |
-
for file_name in file_names:
|
619 |
-
|
620 |
-
|
621 |
-
choices_baseline = choices
|
622 |
|
623 |
-
choices = [tuple(x)[0] for x in choices]
|
624 |
-
df_PG_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
625 |
-
# df_PG_turbo.head()
|
626 |
-
df_PG_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
627 |
-
# df_PG_gpt4.head()
|
628 |
-
|
629 |
-
df = df_PG_human
|
630 |
-
|
631 |
-
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
632 |
-
|
633 |
-
custom_ticks = [2, 6, 10, 14, 18]
|
634 |
-
|
635 |
-
# Calculate density as a percentage
|
636 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
637 |
-
|
638 |
-
# Create a DataFrame with the density percentages
|
639 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
640 |
-
|
641 |
-
# Create the bar chart using Altair
|
642 |
-
chart1 = alt.Chart(density_df).mark_bar().encode(
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
).properties(
|
648 |
-
|
649 |
-
|
650 |
-
).interactive()
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
df = df_PG_gpt4
|
655 |
-
|
656 |
-
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
657 |
-
|
658 |
-
# Calculate density as a percentage
|
659 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
660 |
-
|
661 |
-
# Create a DataFrame with the density percentages
|
662 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
663 |
-
|
664 |
-
# Create the bar chart using Altair
|
665 |
-
chart2 = alt.Chart(density_df).mark_bar().encode(
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
).properties(
|
671 |
-
|
672 |
-
|
673 |
-
).interactive()
|
674 |
-
|
675 |
-
|
676 |
-
df = df_PG_turbo
|
677 |
-
|
678 |
-
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
679 |
-
|
680 |
-
# Calculate density as a percentage
|
681 |
-
density_percentage = df['choices'].value_counts(normalize=True)
|
682 |
-
|
683 |
-
# Create a DataFrame with the density percentages
|
684 |
-
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
685 |
-
|
686 |
-
# Create the bar chart using Altair
|
687 |
-
chart3 = alt.Chart(density_df).mark_bar().encode(
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
).properties(
|
693 |
-
|
694 |
-
|
695 |
-
).interactive()
|
696 |
|
697 |
-
# chart1
|
698 |
-
final6 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
699 |
|
700 |
-
#Final_Final
|
701 |
-
final_final = (final | final2 | final3 ) & (final4 | final5 | final6)
|
702 |
|
703 |
|
704 |
# we want to use bootstrap/template, tell Panel to load up what we need
|
|
|
17 |
import panel as pn
|
18 |
import altair as alt
|
19 |
|
20 |
+
# def choices_to_df(choices, hue):
|
21 |
+
# df = pd.DataFrame(choices, columns=['choices'])
|
22 |
+
# df['hue'] = hue
|
23 |
+
# df['hue'] = df['hue'].astype(str)
|
24 |
+
# return df
|
25 |
+
|
26 |
+
# binrange = (0, 100)
|
27 |
+
# moves = []
|
28 |
+
# with open('dictator.csv', 'r') as f:
|
29 |
+
# reader = csv.reader(f)
|
30 |
+
# header = next(reader)
|
31 |
+
# col2idx = {col: idx for idx, col in enumerate(header)}
|
32 |
+
# for row in reader:
|
33 |
+
# record = {col: row[idx] for col, idx in col2idx.items()}
|
34 |
+
|
35 |
+
# if record['Role'] != 'first': continue
|
36 |
+
# if int(record['Round']) > 1: continue
|
37 |
+
# if int(record['Total']) != 100: continue
|
38 |
+
# if record['move'] == 'None': continue
|
39 |
+
# if record['gameType'] != 'dictator': continue
|
40 |
+
|
41 |
+
# move = float(record['move'])
|
42 |
+
# if move < binrange[0] or \
|
43 |
+
# move > binrange[1]: continue
|
44 |
|
45 |
+
# moves.append(move)
|
46 |
+
|
47 |
+
# df_dictator_human = choices_to_df(moves, 'Human')
|
48 |
+
|
49 |
+
# choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
|
50 |
+
# df_dictator_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
51 |
+
|
52 |
+
# choices = [25, 35, 70, 30, 20, 25, 40, 80, 30, 30, 40, 30, 30, 30, 30, 30, 40, 40, 30, 30, 40, 30, 60, 20, 40, 25, 30, 30, 30]
|
53 |
+
# df_dictator_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
54 |
+
|
55 |
+
# def extract_choices(recrods):
|
56 |
+
# choices = [extract_amout(
|
57 |
+
# messages[-1]['content'],
|
58 |
+
# prefix='$',
|
59 |
+
# print_except=True,
|
60 |
+
# type=float) for messages in records['messages']
|
61 |
+
# ]
|
62 |
+
# choices = [x for x in choices if x is not None]
|
63 |
+
# # print(choices)
|
64 |
+
# return choices
|
65 |
+
|
66 |
+
# def extract_amout(
|
67 |
+
# message,
|
68 |
+
# prefix='',
|
69 |
+
# print_except=True,
|
70 |
+
# type=float,
|
71 |
+
# brackets='[]'
|
72 |
+
# ):
|
73 |
+
# try:
|
74 |
+
# matches = extract_brackets(message, brackets=brackets)
|
75 |
+
# matches = [s[len(prefix):] \
|
76 |
+
# if s.startswith(prefix) \
|
77 |
+
# else s for s in matches]
|
78 |
+
# invalid = False
|
79 |
+
# if len(matches) == 0:
|
80 |
+
# invalid = True
|
81 |
+
# for i in range(len(matches)):
|
82 |
+
# if matches[i] != matches[0]:
|
83 |
+
# invalid = True
|
84 |
+
# if invalid:
|
85 |
+
# raise ValueError('Invalid answer: %s' % message)
|
86 |
+
# return type(matches[0])
|
87 |
+
# except Exception as e:
|
88 |
+
# if print_except: print(e)
|
89 |
+
# return None
|
90 |
+
|
91 |
+
# records = json.load(open('dictator_wo_ex_2023_03_13-11_24_07_PM.json', 'r'))
|
92 |
+
# choices = extract_choices(records)
|
93 |
+
|
94 |
+
# # Plot 1 - Dictator (altruism)
|
95 |
+
# def plot_facet(
|
96 |
+
# df_list,
|
97 |
+
# x='choices',
|
98 |
+
# hue='hue',
|
99 |
+
# palette=None,
|
100 |
+
# binrange=None,
|
101 |
+
# bins=10,
|
102 |
+
# # binwidth=10,
|
103 |
+
# stat='count',
|
104 |
+
# x_label='',
|
105 |
+
# sharex=True,
|
106 |
+
# sharey=False,
|
107 |
+
# subplot=sns.histplot,
|
108 |
+
# xticks_locs=None,
|
109 |
+
# # kde=False,
|
110 |
+
# **kwargs
|
111 |
+
# ):
|
112 |
+
# data = pd.concat(df_list)
|
113 |
+
# if binrange is None:
|
114 |
+
# binrange = (data[x].min(), data[x].max())
|
115 |
+
# g = sns.FacetGrid(
|
116 |
+
# data, row=hue, hue=hue,
|
117 |
+
# palette=palette,
|
118 |
+
# aspect=2, height=2,
|
119 |
+
# sharex=sharex, sharey=sharey,
|
120 |
+
# despine=True,
|
121 |
+
# )
|
122 |
+
# g.map_dataframe(
|
123 |
+
# subplot,
|
124 |
+
# x=x,
|
125 |
+
# # kde=kde,
|
126 |
+
# binrange=binrange,
|
127 |
+
# bins=bins,
|
128 |
+
# stat=stat,
|
129 |
+
# **kwargs
|
130 |
+
# )
|
131 |
+
# # g.add_legend(title='hue')
|
132 |
+
# g.set_axis_labels(x_label, stat.title())
|
133 |
+
# g.set_titles(row_template="{row_name}")
|
134 |
+
# for ax in g.axes.flat:
|
135 |
+
# ax.yaxis.set_major_formatter(
|
136 |
+
# FuncFormatter(lambda y, pos: '{:.2f}'.format(y))
|
137 |
+
# )
|
138 |
|
139 |
+
# binwidth = (binrange[1] - binrange[0]) / bins
|
140 |
+
# if xticks_locs is None:
|
141 |
+
# locs = np.linspace(binrange[0], binrange[1], bins//2+1)
|
142 |
+
# locs = [loc + binwidth for loc in locs]
|
143 |
+
# else:
|
144 |
+
# locs = xticks_locs
|
145 |
+
# labels = [str(int(loc)) for loc in locs]
|
146 |
+
# locs = [loc + 0.5*binwidth for loc in locs]
|
147 |
+
# plt.xticks(locs, labels)
|
148 |
|
149 |
+
# g.set(xlim=binrange)
|
150 |
+
# return g
|
151 |
+
|
152 |
+
# df = df_dictator_human
|
153 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
154 |
+
|
155 |
+
# # Calculate density as a percentage
|
156 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
157 |
+
|
158 |
+
# # Create a DataFrame with the density percentages
|
159 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
160 |
+
|
161 |
+
# # Create the bar chart using Altair
|
162 |
+
# chart1 = alt.Chart(density_df).mark_bar().encode(
|
163 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
164 |
+
# y='density:Q',
|
165 |
+
# color=alt.value('steelblue'),
|
166 |
+
# tooltip=['density']
|
167 |
+
# ).properties(
|
168 |
+
# width=500,
|
169 |
+
# title='Density of Choices'
|
170 |
+
# ).interactive()
|
171 |
|
172 |
+
# df = df_dictator_gpt4
|
173 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
174 |
|
175 |
+
# # Calculate density as a percentage
|
176 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
177 |
|
178 |
+
# # Create a DataFrame with the density percentages
|
179 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
180 |
|
181 |
+
# # Create the bar chart using Altair
|
182 |
+
# chart2 = alt.Chart(density_df).mark_bar().encode(
|
183 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
184 |
+
# y='density:Q',
|
185 |
+
# color=alt.value('orange'),
|
186 |
+
# tooltip=['density']
|
187 |
+
# ).properties(
|
188 |
+
# width=500,
|
189 |
+
# title='Density of Choices'
|
190 |
+
# ).interactive()
|
191 |
|
192 |
+
# df = df_dictator_turbo
|
193 |
+
|
194 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
195 |
|
196 |
+
# # Calculate density as a percentage
|
197 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
198 |
|
199 |
+
# # Create a DataFrame with the density percentages
|
200 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
201 |
+
|
202 |
+
# # Create the bar chart using Altair
|
203 |
+
# chart3 = alt.Chart(density_df).mark_bar().encode(
|
204 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10)),
|
205 |
+
# y='density:Q',
|
206 |
+
# color=alt.value('green'),
|
207 |
+
# tooltip=['density']
|
208 |
+
# ).properties(
|
209 |
+
# width=500,
|
210 |
+
# title='Density of Choices'
|
211 |
+
# ).interactive()
|
212 |
+
|
213 |
+
# final = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
214 |
+
|
215 |
+
# #Plot 2 - - Ultimatum (Fairness)
|
216 |
+
# df = pd.read_csv('ultimatum_strategy.csv')
|
217 |
+
# df = df[df['gameType'] == 'ultimatum_strategy']
|
218 |
+
# df = df[df['Role'] == 'player']
|
219 |
+
# df = df[df['Round'] == 1]
|
220 |
+
# df = df[df['Total'] == 100]
|
221 |
+
# df = df[df['move'] != 'None']
|
222 |
+
# df['propose'] = df['move'].apply(lambda x: eval(x)[0])
|
223 |
+
# df['accept'] = df['move'].apply(lambda x: eval(x)[1])
|
224 |
+
# df = df[(df['propose'] >= 0) & (df['propose'] <= 100)]
|
225 |
+
# df = df[(df['accept'] >= 0) & (df['accept'] <= 100)]
|
226 |
+
|
227 |
+
# df_ultimatum_1_human = choices_to_df(list(df['propose']), 'Human')
|
228 |
+
# df_ultimatum_2_human = choices_to_df(list(df['accept']), 'Human')
|
229 |
+
|
230 |
+
# choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
|
231 |
+
# df_ultimatum_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
232 |
+
|
233 |
+
# choices = [40, 40, 40, 30, 70, 70, 50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 30, 30, 35, 50, 40, 70, 40, 60, 60, 70, 40, 50]
|
234 |
+
# df_ultimatum_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
235 |
+
|
236 |
+
# choices = [50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 25.0, 50.0, 1.0, 1.0, 20.0, 50.0, 50.0, 50.0, 20.0, 50.0, 1.0, 1.0, 1.0, 50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0] + [0, 1]
|
237 |
+
# df_ultimatum_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
238 |
+
|
239 |
+
# choices = [None, 50, 50, 50, 50, 30, None, None, 30, 33.33, 40, None, 50, 40, None, 1, 30, None, 10, 50, 30, 10, 30, None, 30, None, 10, 30, 30, 30]
|
240 |
+
# df_ultimatum_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
241 |
+
|
242 |
+
# choices = [50.0, 50.0, 10.0, 40.0, 20.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 50.0, 20.0, 10.0, 50.0, 20.0, 1.0, 1.0, 50.0, 1.0, 20.0, 1.0, 50.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 50.0]
|
243 |
+
# df_ultimatum_2_gpt4_female = choices_to_df(choices, hue='ChatGPT-4 Female')
|
244 |
+
|
245 |
+
# choices = [1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 50.0, 50.0, 20.0, 20.0, 1.0, 50.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 50.0, 20.0, 20.0, 10.0, 50.0, 1.0, 1.0, 1.0]
|
246 |
+
# df_ultimatum_2_gpt4_male = choices_to_df(choices, hue='ChatGPT-4 Male')
|
247 |
+
|
248 |
+
# choices = [40.0, 1.0, 1.0, 20.0, 1.0, 20.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 1.0, 20.0, 50.0, 10.0, 50.0, 1.0, 1.0, 20.0, 1.0, 50.0, 20.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 40.0]
|
249 |
+
# df_ultimatum_2_gpt4_US = choices_to_df(choices, hue='ChatGPT-4 US')
|
250 |
+
|
251 |
+
# choices = [1.0, 1.0, 20.0, 50.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 50.0, 1.0, 1.0, 1.0, 1.0]
|
252 |
+
# df_ultimatum_2_gpt4_Poland = choices_to_df(choices, hue='ChatGPT-4 Poland')
|
253 |
+
|
254 |
+
# choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 1.0, 20.0, 50.0, 0.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0]
|
255 |
+
# df_ultimatum_2_gpt4_China = choices_to_df(choices, hue='ChatGPT-4 China')
|
256 |
+
|
257 |
+
# choices = [1.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 40.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 20.0, 1.0, 50.0, 1.0, 50.0, 20.0, 1.0, 1.0, 50.0]
|
258 |
+
# df_ultimatum_2_gpt4_UK = choices_to_df(choices, hue='ChatGPT-4 UK')
|
259 |
+
|
260 |
+
# choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 10.0, 1.0, 40.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 50.0, 20.0, 20.0, 1.0, 1.0, 50.0, 20.0, 50.0, 50.0, 20.0, 1.0, 20.0, 50.0, 1]
|
261 |
+
# df_ultimatum_2_gpt4_Columbia = choices_to_df(choices, hue='ChatGPT-4 Columbia')
|
262 |
+
|
263 |
+
# choices = [50.0, 1.0, 50.0, 20.0, 20.0, 20.0, 50.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 50.0, 1.0, 20.0, 20.0, 50.0, 1.0, 50.0, 1.0, 40.0, 1.0, 20.0, 1.0, 20.0, 1.0, 1.0]
|
264 |
+
# df_ultimatum_2_gpt4_under = choices_to_df(choices, hue='ChatGPT-4 Undergrad')
|
265 |
+
|
266 |
+
# choices = [1.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 25.0, 20.0, 50.0, 20.0, 50.0, 50.0, 1.0, 50.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 20.0, 20.0]
|
267 |
+
# df_ultimatum_2_gpt4_grad = choices_to_df(choices, hue='ChatGPT-4 Graduate')
|
268 |
+
|
269 |
+
# df = df_ultimatum_1_human
|
270 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
271 |
+
|
272 |
+
# # Calculate density as a percentage
|
273 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
274 |
+
|
275 |
+
# # Create a DataFrame with the density percentages
|
276 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
277 |
+
|
278 |
+
# # Create the bar chart using Altair
|
279 |
+
# chart1 = alt.Chart(density_df).mark_bar().encode(
|
280 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
281 |
+
# y='density:Q',
|
282 |
+
# color=alt.value('steelblue'),
|
283 |
+
# tooltip=['density']
|
284 |
+
# ).properties(
|
285 |
+
# width=500,
|
286 |
+
# title='Density of Choices'
|
287 |
+
# ).interactive()
|
288 |
+
|
289 |
+
# df = df_ultimatum_1_gpt4
|
290 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
291 |
+
|
292 |
+
# # Calculate density as a percentage
|
293 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
294 |
+
|
295 |
+
# # Create a DataFrame with the density percentages
|
296 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
297 |
+
|
298 |
+
# # Create the bar chart using Altair
|
299 |
+
# chart2 = alt.Chart(density_df).mark_bar().encode(
|
300 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
301 |
+
# y='density:Q',
|
302 |
+
# color=alt.value('orange'),
|
303 |
+
# tooltip=['density']
|
304 |
+
# ).properties(
|
305 |
+
# width=500,
|
306 |
+
# title='Density of Choices'
|
307 |
+
# ).interactive()
|
308 |
+
|
309 |
+
# df = df_ultimatum_1_turbo
|
310 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
311 |
+
|
312 |
+
# # Calculate density as a percentage
|
313 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
314 |
+
|
315 |
+
# # Create a DataFrame with the density percentages
|
316 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
317 |
+
|
318 |
+
# # Create the bar chart using Altair
|
319 |
+
# chart3 = alt.Chart(density_df).mark_bar().encode(
|
320 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10)),
|
321 |
+
# y='density:Q',
|
322 |
+
# color=alt.value('green'),
|
323 |
+
# tooltip=['density']
|
324 |
+
# ).properties(
|
325 |
+
# width=500,
|
326 |
+
# title='Density of Choices'
|
327 |
+
# ).interactive()
|
328 |
+
|
329 |
+
# final2 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
330 |
+
|
331 |
+
# #Plot 3 - - Ultimatum (Responder) (spite)
|
332 |
+
# df = df_ultimatum_2_human
|
333 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
334 |
+
|
335 |
+
# # Calculate density as a percentage
|
336 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
337 |
+
|
338 |
+
# # Create a DataFrame with the density percentages
|
339 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
340 |
+
|
341 |
+
# # Create the bar chart using Altair
|
342 |
+
# chart1 = alt.Chart(density_df).mark_bar().encode(
|
343 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
344 |
+
# y='density:Q',
|
345 |
+
# color=alt.value('steelblue'),
|
346 |
+
# tooltip=['density']
|
347 |
+
# ).properties(
|
348 |
+
# width=500,
|
349 |
+
# title='Density of Choices'
|
350 |
+
# ).interactive()
|
351 |
+
|
352 |
+
# df = df_ultimatum_2_gpt4
|
353 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
354 |
+
|
355 |
+
# # Calculate density as a percentage
|
356 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
357 |
+
|
358 |
+
# # Create a DataFrame with the density percentages
|
359 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
360 |
+
|
361 |
+
# # Create the bar chart using Altair
|
362 |
+
# chart2 = alt.Chart(density_df).mark_bar().encode(
|
363 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
364 |
+
# y='density:Q',
|
365 |
+
# color=alt.value('orange'),
|
366 |
+
# tooltip=['density']
|
367 |
+
# ).properties(
|
368 |
+
# width=500,
|
369 |
+
# title='Density of Choices'
|
370 |
+
# ).interactive()
|
371 |
+
|
372 |
+
# df = df_ultimatum_2_turbo
|
373 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
374 |
+
|
375 |
+
# # Calculate density as a percentage
|
376 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
377 |
+
|
378 |
+
# # Create a DataFrame with the density percentages
|
379 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
380 |
+
|
381 |
+
# # Create the bar chart using Altair
|
382 |
+
# chart3 = alt.Chart(density_df).mark_bar().encode(
|
383 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
384 |
+
# y='density:Q',
|
385 |
+
# color=alt.value('green'),
|
386 |
+
# tooltip=['density']
|
387 |
+
# ).properties(
|
388 |
+
# width=500,
|
389 |
+
# title='Density of Choices'
|
390 |
+
# ).interactive()
|
391 |
+
|
392 |
+
# final3 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
393 |
+
|
394 |
+
# #Plot 4 - - Trust (as Investor) (trust)
|
395 |
+
# binrange = (0, 100)
|
396 |
+
# moves_1 = []
|
397 |
+
# moves_2 = defaultdict(list)
|
398 |
+
# with open('trust_investment.csv', 'r') as f:
|
399 |
+
# reader = csv.reader(f)
|
400 |
+
# header = next(reader)
|
401 |
+
# col2idx = {col: idx for idx, col in enumerate(header)}
|
402 |
+
# for row in reader:
|
403 |
+
# record = {col: row[idx] for col, idx in col2idx.items()}
|
404 |
+
|
405 |
+
# # if record['Role'] != 'first': continue
|
406 |
+
# if int(record['Round']) > 1: continue
|
407 |
+
# # if int(record['Total']) != 100: continue
|
408 |
+
# if record['move'] == 'None': continue
|
409 |
+
# if record['gameType'] != 'trust_investment': continue
|
410 |
+
|
411 |
+
# if record['Role'] == 'first':
|
412 |
+
# move = float(record['move'])
|
413 |
+
# if move < binrange[0] or \
|
414 |
+
# move > binrange[1]: continue
|
415 |
+
# moves_1.append(move)
|
416 |
+
# elif record['Role'] == 'second':
|
417 |
+
# inv, ret = eval(record['roundResult'])
|
418 |
+
# if ret < 0 or \
|
419 |
+
# ret > inv * 3: continue
|
420 |
+
# moves_2[inv].append(ret)
|
421 |
+
# else: continue
|
422 |
+
|
423 |
+
# df_trust_1_human = choices_to_df(moves_1, 'Human')
|
424 |
+
# df_trust_2_human = choices_to_df(moves_2[10], 'Human')
|
425 |
+
# df_trust_3_human = choices_to_df(moves_2[50], 'Human')
|
426 |
+
# df_trust_4_human = choices_to_df(moves_2[100], 'Human')
|
427 |
+
|
428 |
+
# choices = [50.0, 50.0, 40.0, 30.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0, 50.0, 30.0, 30.0, 50.0, 50.0, 50.0, 40.0, 40.0, 50.0, 50.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0]
|
429 |
+
# df_trust_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
430 |
+
|
431 |
+
# choices = [50.0, 50.0, 30.0, 30.0, 30.0, 60.0, 50.0, 40.0, 20.0, 20.0, 50.0, 40.0, 30.0, 20.0, 30.0, 20.0, 30.0, 60.0, 50.0, 30.0, 50.0, 20.0, 20.0, 30.0, 50.0, 30.0, 30.0, 50.0, 40.0] + [30]
|
432 |
+
# df_trust_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
433 |
+
|
434 |
+
# choices = [20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 20.0, 15.0, 15.0, 15.0, 15.0, 15.0, 20.0, 20.0, 15.0]
|
435 |
+
# df_trust_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
436 |
+
|
437 |
+
# choices = [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 25.0, 30.0, 30.0, 20.0, 25.0, 30.0, 20.0, 20.0, 18.0] + [20, 20, 20, 25, 25, 25, 30]
|
438 |
+
# df_trust_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
439 |
+
|
440 |
+
# choices = [100.0, 75.0, 75.0, 75.0, 75.0, 75.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0, 75.0, 75.0, 100.0, 100.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0]
|
441 |
+
# df_trust_3_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
442 |
+
|
443 |
+
# choices = [150.0, 100.0, 150.0, 150.0, 50.0, 150.0, 100.0, 150.0, 100.0, 100.0, 100.0, 150.0] + [100, 100, 100, 100, 100, 100, 100, 100]
|
444 |
+
# df_trust_3_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
445 |
+
|
446 |
+
# choices = [200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0]
|
447 |
+
# df_trust_4_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
448 |
+
|
449 |
+
# choices = [225.0, 225.0, 300.0, 300.0, 220.0, 300.0, 250.0] + [200, 200, 250, 200, 200]
|
450 |
+
# df_trust_4_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
451 |
+
|
452 |
+
# df = df_trust_1_human
|
453 |
+
|
454 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
455 |
+
|
456 |
+
# # Calculate density as a percentage
|
457 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
458 |
+
|
459 |
+
# # Create a DataFrame with the density percentages
|
460 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
461 |
+
|
462 |
+
# # Create the bar chart using Altair
|
463 |
+
# chart1 = alt.Chart(density_df).mark_bar().encode(
|
464 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
465 |
+
# y='density:Q',
|
466 |
+
# color=alt.value('steelblue'),
|
467 |
+
# tooltip=['density']
|
468 |
+
# ).properties(
|
469 |
+
# width=500,
|
470 |
+
# title='Density of Choices'
|
471 |
+
# ).interactive()
|
472 |
+
|
473 |
+
|
474 |
+
|
475 |
+
# df = df_trust_1_gpt4
|
476 |
+
|
477 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
478 |
+
|
479 |
+
# # Calculate density as a percentage
|
480 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
481 |
+
|
482 |
+
# # Create a DataFrame with the density percentages
|
483 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
484 |
+
|
485 |
+
# # Create the bar chart using Altair
|
486 |
+
# chart2 = alt.Chart(density_df).mark_bar().encode(
|
487 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
488 |
+
# y='density:Q',
|
489 |
+
# color=alt.value('orange'),
|
490 |
+
# tooltip=['density']
|
491 |
+
# ).properties(
|
492 |
+
# width=500,
|
493 |
+
# title='Density of Choices'
|
494 |
+
# ).interactive()
|
495 |
+
|
496 |
+
|
497 |
+
# df = df_trust_1_turbo
|
498 |
|
499 |
+
# bin_ranges = [0, 10, 30, 50, 70]
|
500 |
|
501 |
+
# # Calculate density as a percentage
|
502 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
503 |
|
504 |
+
# # Create a DataFrame with the density percentages
|
505 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
506 |
|
507 |
+
# # Create the bar chart using Altair
|
508 |
+
# chart3 = alt.Chart(density_df).mark_bar().encode(
|
509 |
+
# x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
|
510 |
+
# y='density:Q',
|
511 |
+
# color=alt.value('green'),
|
512 |
+
# tooltip=['density']
|
513 |
+
# ).properties(
|
514 |
+
# width=500,
|
515 |
+
# title='Density of Choices'
|
516 |
+
# ).interactive()
|
517 |
|
518 |
|
519 |
+
# final4 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
520 |
+
|
521 |
+
# #Plot 5 - Trust (as Banker) (fairness, altruism, reciprocity)
|
522 |
+
# df = df_trust_3_human
|
523 |
+
|
524 |
+
# bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
525 |
+
|
526 |
+
# custom_ticks = [2, 6, 10, 14, 18]
|
527 |
+
|
528 |
+
# # Calculate density as a percentage
|
529 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
530 |
+
|
531 |
+
# # Create a DataFrame with the density percentages
|
532 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
533 |
|
534 |
+
# # Create the bar chart using Altair
|
535 |
+
# chart1 = alt.Chart(density_df).mark_bar().encode(
|
536 |
+
# x=alt.X('choices:O', bin=alt.Bin(step=10), axis=None),
|
537 |
+
# y='density:Q',
|
538 |
+
# color=alt.value('steelblue')
|
539 |
+
# ).properties(
|
540 |
+
# width=500,
|
541 |
+
# title='Density of Choices'
|
542 |
+
# ).interactive()
|
543 |
|
544 |
|
545 |
|
546 |
+
# df = df_trust_3_gpt4
|
547 |
+
|
548 |
+
# bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
549 |
+
|
550 |
+
# # Calculate density as a percentage
|
551 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
552 |
|
553 |
+
# # Create a DataFrame with the density percentages
|
554 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
555 |
|
556 |
+
# # Create the bar chart using Altair
|
557 |
+
# chart2 = alt.Chart(density_df).mark_bar().encode(
|
558 |
+
# x=alt.X('choices:O', bin=alt.Bin(step=10), axis=None),
|
559 |
+
# y='density:Q',
|
560 |
+
# color=alt.value('orange')
|
561 |
+
# ).properties(
|
562 |
+
# width=500,
|
563 |
+
# title='Density of Choices'
|
564 |
+
# ).interactive()
|
565 |
|
566 |
|
567 |
+
# df = df_trust_3_turbo
|
568 |
|
569 |
+
# bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
570 |
|
571 |
+
# # Calculate density as a percentage
|
572 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
573 |
|
574 |
+
# # Create a DataFrame with the density percentages
|
575 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
576 |
|
577 |
+
# # Create the bar chart using Altair
|
578 |
+
# chart3 = alt.Chart(density_df).mark_bar().encode(
|
579 |
+
# x=alt.X('choices:O', bin=alt.Bin(step=10)),
|
580 |
+
# y='density:Q',
|
581 |
+
# color=alt.value('green')
|
582 |
+
# ).properties(
|
583 |
+
# width=500,
|
584 |
+
# title='Density of Choices'
|
585 |
+
# ).interactive()
|
586 |
|
587 |
+
# # chart1
|
588 |
+
# final5 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
589 |
|
590 |
+
# #Plot 6 - Public Goods (Free-Riding, altruism, cooperation)
|
591 |
+
# df = pd.read_csv('public_goods_linear_water.csv')
|
592 |
+
# df = df[df['Role'] == 'contributor']
|
593 |
+
# df = df[df['Round'] <= 3]
|
594 |
+
# df = df[df['Total'] == 20]
|
595 |
+
# df = df[df['groupSize'] == 4]
|
596 |
+
# df = df[df['move'] != None]
|
597 |
+
# df = df[(df['move'] >= 0) & (df['move'] <= 20)]
|
598 |
+
# df = df[df['gameType'] == 'public_goods_linear_water']
|
599 |
|
600 |
+
# round_1 = df[df['Round'] == 1]['move']
|
601 |
+
# round_2 = df[df['Round'] == 2]['move']
|
602 |
+
# round_3 = df[df['Round'] == 3]['move']
|
603 |
+
# print(len(round_1), len(round_2), len(round_3))
|
604 |
+
# df_PG_human = pd.DataFrame({
|
605 |
+
# 'choices': list(round_1)
|
606 |
+
# })
|
607 |
+
# df_PG_human['hue'] = 'Human'
|
608 |
+
# # df_PG_human
|
609 |
|
610 |
+
# file_names = [
|
611 |
+
# 'PG_basic_turbo_2023_05_09-02_49_09_AM.json',
|
612 |
+
# 'PG_basic_turbo_loss_2023_05_09-03_59_49_AM.json',
|
613 |
+
# 'PG_basic_gpt4_2023_05_09-11_15_42_PM.json',
|
614 |
+
# 'PG_basic_gpt4_loss_2023_05_09-10_44_38_PM.json',
|
615 |
+
# ]
|
616 |
|
617 |
+
# choices = []
|
618 |
+
# for file_name in file_names:
|
619 |
+
# with open(file_name, 'r') as f:
|
620 |
+
# choices += json.load(f)['choices']
|
621 |
+
# choices_baseline = choices
|
622 |
|
623 |
+
# choices = [tuple(x)[0] for x in choices]
|
624 |
+
# df_PG_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
|
625 |
+
# # df_PG_turbo.head()
|
626 |
+
# df_PG_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
|
627 |
+
# # df_PG_gpt4.head()
|
628 |
+
|
629 |
+
# df = df_PG_human
|
630 |
+
|
631 |
+
# bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
632 |
+
|
633 |
+
# custom_ticks = [2, 6, 10, 14, 18]
|
634 |
+
|
635 |
+
# # Calculate density as a percentage
|
636 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
637 |
+
|
638 |
+
# # Create a DataFrame with the density percentages
|
639 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
640 |
+
|
641 |
+
# # Create the bar chart using Altair
|
642 |
+
# chart1 = alt.Chart(density_df).mark_bar().encode(
|
643 |
+
# x=alt.X('choices:O', bin=alt.Bin(step=2), axis=None),
|
644 |
+
# y='density:Q',
|
645 |
+
# color=alt.value('steelblue'),
|
646 |
+
# tooltip=['density']
|
647 |
+
# ).properties(
|
648 |
+
# width=500,
|
649 |
+
# title='Density of Choices'
|
650 |
+
# ).interactive()
|
651 |
+
|
652 |
+
|
653 |
+
|
654 |
+
# df = df_PG_gpt4
|
655 |
+
|
656 |
+
# bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
657 |
+
|
658 |
+
# # Calculate density as a percentage
|
659 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
660 |
+
|
661 |
+
# # Create a DataFrame with the density percentages
|
662 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
663 |
+
|
664 |
+
# # Create the bar chart using Altair
|
665 |
+
# chart2 = alt.Chart(density_df).mark_bar().encode(
|
666 |
+
# x=alt.X('choices:O', bin=alt.Bin(step=2), axis=None),
|
667 |
+
# y='density:Q',
|
668 |
+
# color=alt.value('orange'),
|
669 |
+
# tooltip=['density']
|
670 |
+
# ).properties(
|
671 |
+
# width=500,
|
672 |
+
# title='Density of Choices'
|
673 |
+
# ).interactive()
|
674 |
+
|
675 |
+
|
676 |
+
# df = df_PG_turbo
|
677 |
+
|
678 |
+
# bin_ranges = [0, 25, 50, 75, 100, 125, 150]
|
679 |
+
|
680 |
+
# # Calculate density as a percentage
|
681 |
+
# density_percentage = df['choices'].value_counts(normalize=True)
|
682 |
+
|
683 |
+
# # Create a DataFrame with the density percentages
|
684 |
+
# density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
|
685 |
+
|
686 |
+
# # Create the bar chart using Altair
|
687 |
+
# chart3 = alt.Chart(density_df).mark_bar().encode(
|
688 |
+
# x=alt.X('choices:O', bin=alt.Bin(step=2)),
|
689 |
+
# y='density:Q',
|
690 |
+
# color=alt.value('green'),
|
691 |
+
# tooltip=['density']
|
692 |
+
# ).properties(
|
693 |
+
# width=500,
|
694 |
+
# title='Density of Choices'
|
695 |
+
# ).interactive()
|
696 |
|
697 |
+
# # chart1
|
698 |
+
# final6 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
|
699 |
|
700 |
+
# #Final_Final
|
701 |
+
# final_final = (final | final2 | final3 ) & (final4 | final5 | final6)
|
702 |
|
703 |
|
704 |
# we want to use bootstrap/template, tell Panel to load up what we need
|