Spaces:
Runtime error
Runtime error
File size: 13,626 Bytes
bd6c4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
"""
This module is responsible for processing images, particularly for face-related tasks.
It uses various libraries such as OpenCV, NumPy, and InsightFace to perform tasks like
face detection, augmentation, and mask rendering. The ImageProcessor class encapsulates
the functionality for these operations.
"""
import os
from typing import List
import cv2
import mediapipe as mp
import numpy as np
import torch
from insightface.app import FaceAnalysis
from PIL import Image
from torchvision import transforms
from ..utils.util import (blur_mask, get_landmark_overframes, get_mask,
get_union_face_mask, get_union_lip_mask)
MEAN = 0.5
STD = 0.5
class ImageProcessor:
"""
ImageProcessor is a class responsible for processing images, particularly for face-related tasks.
It takes in an image and performs various operations such as augmentation, face detection,
face embedding extraction, and rendering a face mask. The processed images are then used for
further analysis or recognition purposes.
Attributes:
img_size (int): The size of the image to be processed.
face_analysis_model_path (str): The path to the face analysis model.
Methods:
preprocess(source_image_path, cache_dir):
Preprocesses the input image by performing augmentation, face detection,
face embedding extraction, and rendering a face mask.
close():
Closes the ImageProcessor and releases any resources being used.
_augmentation(images, transform, state=None):
Applies image augmentation to the input images using the given transform and state.
__enter__():
Enters a runtime context and returns the ImageProcessor object.
__exit__(_exc_type, _exc_val, _exc_tb):
Exits a runtime context and handles any exceptions that occurred during the processing.
"""
def __init__(self, img_size, face_analysis_model_path) -> None:
self.img_size = img_size
self.pixel_transform = transforms.Compose(
[
transforms.Resize(self.img_size),
transforms.ToTensor(),
transforms.Normalize([MEAN], [STD]),
]
)
self.cond_transform = transforms.Compose(
[
transforms.Resize(self.img_size),
transforms.ToTensor(),
]
)
self.attn_transform_64 = transforms.Compose(
[
transforms.Resize(
(self.img_size[0] // 8, self.img_size[0] // 8)),
transforms.ToTensor(),
]
)
self.attn_transform_32 = transforms.Compose(
[
transforms.Resize(
(self.img_size[0] // 16, self.img_size[0] // 16)),
transforms.ToTensor(),
]
)
self.attn_transform_16 = transforms.Compose(
[
transforms.Resize(
(self.img_size[0] // 32, self.img_size[0] // 32)),
transforms.ToTensor(),
]
)
self.attn_transform_8 = transforms.Compose(
[
transforms.Resize(
(self.img_size[0] // 64, self.img_size[0] // 64)),
transforms.ToTensor(),
]
)
self.face_analysis = FaceAnalysis(
name="",
root=face_analysis_model_path,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
def preprocess(self, source_image_path: str, cache_dir: str, face_region_ratio: float):
"""
Apply preprocessing to the source image to prepare for face analysis.
Parameters:
source_image_path (str): The path to the source image.
cache_dir (str): The directory to cache intermediate results.
Returns:
None
"""
source_image = Image.open(source_image_path)
ref_image_pil = source_image.convert("RGB")
# 1. image augmentation
pixel_values_ref_img = self._augmentation(ref_image_pil, self.pixel_transform)
# 2.1 detect face
faces = self.face_analysis.get(cv2.cvtColor(np.array(ref_image_pil.copy()), cv2.COLOR_RGB2BGR))
if not faces:
print("No faces detected in the image. Using the entire image as the face region.")
# Use the entire image as the face region
face = {
"bbox": [0, 0, ref_image_pil.width, ref_image_pil.height],
"embedding": np.zeros(512)
}
else:
# Sort faces by size and select the largest one
faces_sorted = sorted(faces, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]), reverse=True)
face = faces_sorted[0] # Select the largest face
# 2.2 face embedding
face_emb = face["embedding"]
# 2.3 render face mask
get_mask(source_image_path, cache_dir, face_region_ratio)
file_name = os.path.basename(source_image_path).split(".")[0]
face_mask_pil = Image.open(
os.path.join(cache_dir, f"{file_name}_face_mask.png")).convert("RGB")
face_mask = self._augmentation(face_mask_pil, self.cond_transform)
# 2.4 detect and expand lip, face mask
sep_background_mask = Image.open(
os.path.join(cache_dir, f"{file_name}_sep_background.png"))
sep_face_mask = Image.open(
os.path.join(cache_dir, f"{file_name}_sep_face.png"))
sep_lip_mask = Image.open(
os.path.join(cache_dir, f"{file_name}_sep_lip.png"))
pixel_values_face_mask = [
self._augmentation(sep_face_mask, self.attn_transform_64),
self._augmentation(sep_face_mask, self.attn_transform_32),
self._augmentation(sep_face_mask, self.attn_transform_16),
self._augmentation(sep_face_mask, self.attn_transform_8),
]
pixel_values_lip_mask = [
self._augmentation(sep_lip_mask, self.attn_transform_64),
self._augmentation(sep_lip_mask, self.attn_transform_32),
self._augmentation(sep_lip_mask, self.attn_transform_16),
self._augmentation(sep_lip_mask, self.attn_transform_8),
]
pixel_values_full_mask = [
self._augmentation(sep_background_mask, self.attn_transform_64),
self._augmentation(sep_background_mask, self.attn_transform_32),
self._augmentation(sep_background_mask, self.attn_transform_16),
self._augmentation(sep_background_mask, self.attn_transform_8),
]
pixel_values_full_mask = [mask.view(1, -1)
for mask in pixel_values_full_mask]
pixel_values_face_mask = [mask.view(1, -1)
for mask in pixel_values_face_mask]
pixel_values_lip_mask = [mask.view(1, -1)
for mask in pixel_values_lip_mask]
return pixel_values_ref_img, face_mask, face_emb, pixel_values_full_mask, pixel_values_face_mask, pixel_values_lip_mask
def close(self):
"""
Closes the ImageProcessor and releases any resources held by the FaceAnalysis instance.
Args:
self: The ImageProcessor instance.
Returns:
None.
"""
for _, model in self.face_analysis.models.items():
if hasattr(model, "Dispose"):
model.Dispose()
def _augmentation(self, images, transform, state=None):
if state is not None:
torch.set_rng_state(state)
if isinstance(images, List):
transformed_images = [transform(img) for img in images]
ret_tensor = torch.stack(transformed_images, dim=0) # (f, c, h, w)
else:
ret_tensor = transform(images) # (c, h, w)
return ret_tensor
def __enter__(self):
return self
def __exit__(self, _exc_type, _exc_val, _exc_tb):
self.close()
class ImageProcessorForDataProcessing():
"""
ImageProcessor is a class responsible for processing images, particularly for face-related tasks.
It takes in an image and performs various operations such as augmentation, face detection,
face embedding extraction, and rendering a face mask. The processed images are then used for
further analysis or recognition purposes.
Attributes:
img_size (int): The size of the image to be processed.
face_analysis_model_path (str): The path to the face analysis model.
Methods:
preprocess(source_image_path, cache_dir):
Preprocesses the input image by performing augmentation, face detection,
face embedding extraction, and rendering a face mask.
close():
Closes the ImageProcessor and releases any resources being used.
_augmentation(images, transform, state=None):
Applies image augmentation to the input images using the given transform and state.
__enter__():
Enters a runtime context and returns the ImageProcessor object.
__exit__(_exc_type, _exc_val, _exc_tb):
Exits a runtime context and handles any exceptions that occurred during the processing.
"""
def __init__(self, face_analysis_model_path, landmark_model_path, step) -> None:
if step == 2:
self.face_analysis = FaceAnalysis(
name="",
root=face_analysis_model_path,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
self.landmarker = None
else:
BaseOptions = mp.tasks.BaseOptions
FaceLandmarker = mp.tasks.vision.FaceLandmarker
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
VisionRunningMode = mp.tasks.vision.RunningMode
# Create a face landmarker instance with the video mode:
options = FaceLandmarkerOptions(
base_options=BaseOptions(model_asset_path=landmark_model_path),
running_mode=VisionRunningMode.IMAGE,
)
self.landmarker = FaceLandmarker.create_from_options(options)
self.face_analysis = None
def preprocess(self, source_image_path: str):
"""
Apply preprocessing to the source image to prepare for face analysis.
Parameters:
source_image_path (str): The path to the source image.
cache_dir (str): The directory to cache intermediate results.
Returns:
None
"""
# 1. get face embdeding
face_mask, face_emb, sep_pose_mask, sep_face_mask, sep_lip_mask = None, None, None, None, None
if self.face_analysis:
for frame in sorted(os.listdir(source_image_path)):
try:
source_image = Image.open(
os.path.join(source_image_path, frame))
ref_image_pil = source_image.convert("RGB")
# 2.1 detect face
faces = self.face_analysis.get(cv2.cvtColor(
np.array(ref_image_pil.copy()), cv2.COLOR_RGB2BGR))
# use max size face
face = sorted(faces, key=lambda x: (
x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))[-1]
# 2.2 face embedding
face_emb = face["embedding"]
if face_emb is not None:
break
except Exception as _:
continue
if self.landmarker:
# 3.1 get landmark
landmarks, height, width = get_landmark_overframes(
self.landmarker, source_image_path)
assert len(landmarks) == len(os.listdir(source_image_path))
# 3 render face and lip mask
face_mask = get_union_face_mask(landmarks, height, width)
lip_mask = get_union_lip_mask(landmarks, height, width)
# 4 gaussian blur
blur_face_mask = blur_mask(face_mask, (64, 64), (51, 51))
blur_lip_mask = blur_mask(lip_mask, (64, 64), (31, 31))
# 5 seperate mask
sep_face_mask = cv2.subtract(blur_face_mask, blur_lip_mask)
sep_pose_mask = 255.0 - blur_face_mask
sep_lip_mask = blur_lip_mask
return face_mask, face_emb, sep_pose_mask, sep_face_mask, sep_lip_mask
def close(self):
"""
Closes the ImageProcessor and releases any resources held by the FaceAnalysis instance.
Args:
self: The ImageProcessor instance.
Returns:
None.
"""
for _, model in self.face_analysis.models.items():
if hasattr(model, "Dispose"):
model.Dispose()
def _augmentation(self, images, transform, state=None):
if state is not None:
torch.set_rng_state(state)
if isinstance(images, List):
transformed_images = [transform(img) for img in images]
ret_tensor = torch.stack(transformed_images, dim=0) # (f, c, h, w)
else:
ret_tensor = transform(images) # (c, h, w)
return ret_tensor
def __enter__(self):
return self
def __exit__(self, _exc_type, _exc_val, _exc_tb):
self.close()
|