Spaces:
Runtime error
Runtime error
""" | |
This module defines the Wav2Vec model, which is a pre-trained model for speech recognition and understanding. | |
It inherits from the Wav2Vec2Model class in the transformers library and provides additional functionalities | |
such as feature extraction and encoding. | |
Classes: | |
Wav2VecModel: Inherits from Wav2Vec2Model and adds additional methods for feature extraction and encoding. | |
Functions: | |
linear_interpolation: Interpolates the features based on the sequence length. | |
""" | |
import torch.nn.functional as F | |
from transformers import Wav2Vec2Model | |
from transformers.modeling_outputs import BaseModelOutput | |
class Wav2VecModel(Wav2Vec2Model): | |
""" | |
Wav2VecModel is a custom model class that extends the Wav2Vec2Model class from the transformers library. | |
It inherits all the functionality of the Wav2Vec2Model and adds additional methods for feature extraction and encoding. | |
... | |
Attributes: | |
base_model (Wav2Vec2Model): The base Wav2Vec2Model object. | |
Methods: | |
forward(input_values, seq_len, attention_mask=None, mask_time_indices=None | |
, output_attentions=None, output_hidden_states=None, return_dict=None): | |
Forward pass of the Wav2VecModel. | |
It takes input_values, seq_len, and other optional parameters as input and returns the output of the base model. | |
feature_extract(input_values, seq_len): | |
Extracts features from the input_values using the base model. | |
encode(extract_features, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None): | |
Encodes the extracted features using the base model and returns the encoded features. | |
""" | |
def forward( | |
self, | |
input_values, | |
seq_len, | |
attention_mask=None, | |
mask_time_indices=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
""" | |
Forward pass of the Wav2Vec model. | |
Args: | |
self: The instance of the model. | |
input_values: The input values (waveform) to the model. | |
seq_len: The sequence length of the input values. | |
attention_mask: Attention mask to be used for the model. | |
mask_time_indices: Mask indices to be used for the model. | |
output_attentions: If set to True, returns attentions. | |
output_hidden_states: If set to True, returns hidden states. | |
return_dict: If set to True, returns a BaseModelOutput instead of a tuple. | |
Returns: | |
The output of the Wav2Vec model. | |
""" | |
self.config.output_attentions = True | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
extract_features = self.feature_extractor(input_values) | |
extract_features = extract_features.transpose(1, 2) | |
extract_features = linear_interpolation(extract_features, seq_len=seq_len) | |
if attention_mask is not None: | |
# compute reduced attention_mask corresponding to feature vectors | |
attention_mask = self._get_feature_vector_attention_mask( | |
extract_features.shape[1], attention_mask, add_adapter=False | |
) | |
hidden_states, extract_features = self.feature_projection(extract_features) | |
hidden_states = self._mask_hidden_states( | |
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask | |
) | |
encoder_outputs = self.encoder( | |
hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = encoder_outputs[0] | |
if self.adapter is not None: | |
hidden_states = self.adapter(hidden_states) | |
if not return_dict: | |
return (hidden_states, ) + encoder_outputs[1:] | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
def feature_extract( | |
self, | |
input_values, | |
seq_len, | |
): | |
""" | |
Extracts features from the input values and returns the extracted features. | |
Parameters: | |
input_values (torch.Tensor): The input values to be processed. | |
seq_len (torch.Tensor): The sequence lengths of the input values. | |
Returns: | |
extracted_features (torch.Tensor): The extracted features from the input values. | |
""" | |
extract_features = self.feature_extractor(input_values) | |
extract_features = extract_features.transpose(1, 2) | |
extract_features = linear_interpolation(extract_features, seq_len=seq_len) | |
return extract_features | |
def encode( | |
self, | |
extract_features, | |
attention_mask=None, | |
mask_time_indices=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
""" | |
Encodes the input features into the output space. | |
Args: | |
extract_features (torch.Tensor): The extracted features from the audio signal. | |
attention_mask (torch.Tensor, optional): Attention mask to be used for padding. | |
mask_time_indices (torch.Tensor, optional): Masked indices for the time dimension. | |
output_attentions (bool, optional): If set to True, returns the attention weights. | |
output_hidden_states (bool, optional): If set to True, returns all hidden states. | |
return_dict (bool, optional): If set to True, returns a BaseModelOutput instead of the tuple. | |
Returns: | |
The encoded output features. | |
""" | |
self.config.output_attentions = True | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if attention_mask is not None: | |
# compute reduced attention_mask corresponding to feature vectors | |
attention_mask = self._get_feature_vector_attention_mask( | |
extract_features.shape[1], attention_mask, add_adapter=False | |
) | |
hidden_states, extract_features = self.feature_projection(extract_features) | |
hidden_states = self._mask_hidden_states( | |
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask | |
) | |
encoder_outputs = self.encoder( | |
hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = encoder_outputs[0] | |
if self.adapter is not None: | |
hidden_states = self.adapter(hidden_states) | |
if not return_dict: | |
return (hidden_states, ) + encoder_outputs[1:] | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
def linear_interpolation(features, seq_len): | |
""" | |
Transpose the features to interpolate linearly. | |
Args: | |
features (torch.Tensor): The extracted features to be interpolated. | |
seq_len (torch.Tensor): The sequence lengths of the features. | |
Returns: | |
torch.Tensor: The interpolated features. | |
""" | |
features = features.transpose(1, 2) | |
output_features = F.interpolate(features, size=seq_len, align_corners=True, mode='linear') | |
return output_features.transpose(1, 2) | |