Spaces:
Paused
Paused
File size: 15,926 Bytes
89cbc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
#####################################################
### DOCUMENT PROCESSOR [APP]
#####################################################
### Jonathan Wang
# ABOUT:
# This creates an app to chat with PDFs.
# This is the APP
# which runs the backend and codes the frontend UI.
#####################################################
### TODO Board:
# Try ColPali? https://huggingface.co/vidore/colpali
#####################################################
### PROGRAM IMPORTS
from __future__ import annotations
import base64
import gc
import logging
import os
import random
import sys
import warnings
from pathlib import Path
from typing import Any, cast
import nest_asyncio
import numpy as np
import streamlit as st
from llama_index.core import Settings, get_response_synthesizer
from llama_index.core.base.llms import BaseLLM
from llama_index.core.postprocessor import (
SentenceEmbeddingOptimizer,
SimilarityPostprocessor,
)
from llama_index.core.response_synthesizers import ResponseMode
from streamlit import session_state as ss
from summary import (
ImageSummaryMetadataAdder,
TableSummaryMetadataAdder,
get_tree_summarizer,
)
from torch.cuda import (
empty_cache,
get_device_name,
is_available,
manual_seed,
mem_get_info,
)
from transformers import set_seed
# Own Modules
from agent import doclist_to_agent
from citation import get_citation_builder
from full_doc import FullDocument
from keywords import KeywordMetadataAdder
from metadata_adder import UnstructuredPDFPostProcessor
from models import get_embedder, get_llm, get_multimodal_llm, get_reranker
from obs_logging import get_callback_manager, get_obs
from pdf_reader import UnstructuredPDFReader
from pdf_reader_utils import (
chunk_by_header,
clean_abbreviations,
combine_listitem_chunks,
dedupe_title_chunks,
remove_header_footer_repeated,
)
from parsers import get_parser
from prompts import get_qa_prompt, get_refine_prompt
#####################################
### SETTINGS
# Logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
# CUDA GPU memory avoid fragmentation.
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" # avoid vram frag
os.environ["MAX_SPLIT_SIZE_MB"] = "128"
os.environ["SCARF_NO_ANALYTICS"] = "true" # get rid of data collection from Unstructured
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
os.environ["HF_HOME"] = "/data/.huggingface" # save cached models on disk.
SEED = 31415926
print(f"CUDA Availablility: {is_available()}")
print(f"CUDA Device Name: {get_device_name()}")
print(f"CUDA Memory: {mem_get_info()}")
gc.collect()
empty_cache()
# Asyncio: fix some issues with nesting https://github.com/run-llama/llama_index/issues/9978
nest_asyncio.apply()
# Set seeds
if (random.getstate() is None):
random.seed(SEED) # python
np.random.seed(SEED) # numpy # TODO(Jonathan Wang): Replace with generator
manual_seed(SEED) # pytorch
set_seed(SEED) # transformers
# API Keys
os.environ["HF_TOKEN"] = st.secrets["huggingface_api_token"]
os.environ["OPENAI_API_KEY"] = st.secrets["openai_api_key"]
os.environ["GROQ_API_KEY"] = st.secrets["groq_api_key"]
#########################################################################
### SESSION STATE INITIALIZATION
st.set_page_config(layout="wide")
if "pdf_ref" not in ss:
ss.input_pdf = []
if "doclist" not in ss:
ss.doclist = []
if "pdf_reader" not in ss:
ss.pdf_reader = None
if "pdf_postprocessor" not in ss:
ss.pdf_postprocessor = None
# if 'sentence_model' not in ss:
# ss.sentence_model = None # sentence splitting model, as alternative to nltk/PySBD
if "embed_model" not in ss:
ss.embed_model = None
gc.collect()
empty_cache()
if "reranker_model" not in ss:
ss.reranker_model = None
gc.collect()
empty_cache()
if "llm" not in ss:
ss.llm = None
gc.collect()
empty_cache()
if "multimodal_llm" not in ss:
ss.multimodal_llm = None
gc.collect()
empty_cache()
if "callback_manager" not in ss:
ss.callback_manager = None
if "node_parser" not in ss:
ss.node_parser = None
if "node_postprocessors" not in ss:
ss.node_postprocessors = None
if "response_synthesizer" not in ss:
ss.response_synthesizer = None
if "tree_summarizer" not in ss:
ss.tree_summarizer = None
if "citation_builder" not in ss:
ss.citation_builder = None
if "agent" not in ss:
ss.agent = None
if "observability" not in ss:
ss.observability = None
if "uploaded_files" not in ss:
ss.uploaded_files = []
if "selected_file" not in ss:
ss.selected_file = None
if "chat_messages" not in ss:
ss.chat_messages = []
################################################################################
### SCRIPT
st.markdown("""
<style>
.block-container {
padding-top: 3rem;
padding-bottom: 0rem;
padding-left: 3rem;
padding-right: 3rem;
}
</style>
""", unsafe_allow_html=True)
### # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
### UI
st.text("Autodoc Lifter Local PDF Chatbot (Built with Meta🦙3)")
col_left, col_right = st.columns([1, 1])
### # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
### PDF Upload UI (Left Panel)
with st.sidebar:
uploaded_files = st.file_uploader(
label="Upload a PDF file.",
type="pdf",
accept_multiple_files=True,
label_visibility="collapsed",
)
### # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
### PDF Display UI (Middle Panel)
# NOTE: This currently only displays the PDF, which requires user interaction (below)
### # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
### Chat UI (Right Panel)
with col_right:
messages_container = st.container(height=475, border=False)
input_container = st.container(height=80, border=False)
with messages_container:
for message in ss.chat_messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
with input_container:
# Accept user input
prompt = st.chat_input("Ask your question about the document here.")
### # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
### Get Models and Settings
# Get Vision LLM
if (ss.multimodal_llm is None):
print(f"CUDA Memory Pre-VLLM: {mem_get_info()}")
vision_llm = get_multimodal_llm()
ss.multimodal_llm = vision_llm
# Get LLM
if (ss.llm is None):
print(f"CUDA Memory Pre-LLM: {mem_get_info()}")
llm = get_llm()
ss.llm = llm
Settings.llm = cast(llm, BaseLLM)
# Get Sentence Splitting Model.
# if (ss.sentence_model is None):
# sent_splitter = get_sat_sentence_splitter('sat-3l-sm')
# ss.sentence_model = sent_splitter
# Get Embedding Model
if (ss.embed_model is None):
print(f"CUDA Memory Pre-Embedding: {mem_get_info()}")
embed_model = get_embedder()
ss.embed_model = embed_model
Settings.embed_model = embed_model
# Get Reranker
if (ss.reranker_model is None):
print(f"CUDA Memory Pre-Reranking: {mem_get_info()}")
ss.reranker_model = get_reranker()
# Get Callback Manager
if (ss.callback_manager is None):
callback_manager = get_callback_manager()
ss.callback_manager = callback_manager
Settings.callback_manager = callback_manager
# Get Node Parser
if (ss.node_parser is None):
node_parser = get_parser(
embed_model=Settings.embed_model,
callback_manager=ss.callback_manager
)
ss.node_parser = node_parser
Settings.node_parser = node_parser
#### Get Observability
if (ss.observability is None):
obs = get_obs()
### Get PDF Reader
if (ss.pdf_reader is None):
ss.pdf_reader = UnstructuredPDFReader()
### Get PDF Reader Postprocessing
if (ss.pdf_postprocessor is None):
# Get embedding
# regex_adder = RegexMetadataAdder(regex_pattern=) # Are there any that I need?
keyword_adder = KeywordMetadataAdder(metadata_name="keywords")
table_summary_adder = TableSummaryMetadataAdder(llm=ss.llm)
image_summary_adder = ImageSummaryMetadataAdder(llm=ss.multimodal_llm)
pdf_postprocessor = UnstructuredPDFPostProcessor(
embed_model=ss.embed_model,
metadata_adders=[keyword_adder, table_summary_adder, image_summary_adder]
)
ss.pdf_postprocessor = pdf_postprocessor
#### Get Observability
if (ss.observability is None):
ss.observability = get_obs()
observability = ss.observability
### Get Node Postprocessor Pipeline
if (ss.node_postprocessors is None):
from nltk.tokenize import PunktTokenizer
punkt_tokenizer = PunktTokenizer()
ss.node_postprocessors = [
SimilarityPostprocessor(similarity_cutoff=0.01), # remove nodes unrelated to query
ss.reranker_model, # rerank
# remove sentences less related to query. lower is stricter
SentenceEmbeddingOptimizer(tokenizer_fn=punkt_tokenizer.tokenize, percentile_cutoff=0.2),
]
### Get Response Synthesizer
if (ss.response_synthesizer is None):
ss.response_synthesizer = get_response_synthesizer(
response_mode=ResponseMode.COMPACT,
text_qa_template=get_qa_prompt(),
refine_template=get_refine_prompt()
)
### Get Tree Summarizer
if (ss.tree_summarizer is None):
ss.tree_summarizer = get_tree_summarizer()
### Get Citation Builder
if (ss.citation_builder is None):
ss.citation_builder = get_citation_builder()
### # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
### Handle User Interaction
def handle_new_pdf(file_io: Any) -> None:
"""Handle processing a new source PDF file document."""
with st.sidebar:
with (st.spinner("Reading input file, this make take some time...")):
### Save Locally
# TODO(Jonathan Wang): Get the user to upload their file with a reference name in a separate tab.
if not Path(__file__).parent.joinpath("data").exists():
print("NEWPDF: Making data directory...")
Path(__file__).parent.joinpath("data").mkdir(parents=True)
with open(Path(__file__).parent.joinpath("data/input.pdf"), "wb") as f:
print("NEWPDF: Writing input file...")
f.write(file_io.getbuffer())
### Create Document
print("NEWPDF: Building Document...")
new_document = FullDocument(
name="input.pdf",
file_path=Path(__file__).parent.joinpath("data/input.pdf"),
)
#### Process document.
print("NEWPDF: Writing input file...")
new_document.file_to_nodes(
reader=ss.pdf_reader,
postreaders=[
clean_abbreviations, dedupe_title_chunks, combine_listitem_chunks,
remove_header_footer_repeated, chunk_by_header
],
node_parser=ss.node_parser,
postparsers=[ss.pdf_postprocessor],
)
### Get Storage Context
with (st.spinner("Processing input file, this make take some time...")):
new_document.nodes_to_summary(summarizer=ss.tree_summarizer)
new_document.summary_to_oneline(summarizer=ss.tree_summarizer)
new_document.nodes_to_document_keywords()
new_document.nodes_to_storage()
### Get Retrieval on Vector Store Index
with (st.spinner("Building retriever for the input file...")):
new_document.storage_to_retriever(callback_manager=ss.callback_manager)
### Get LLM Query Engine
with (st.spinner("Building query responder for the input file...")):
new_document.retriever_to_engine(
response_synthesizer=ss.response_synthesizer,
callback_manager=ss.callback_manager
)
new_document.engine_to_sub_question_engine()
### Officially Add to Document List
ss.uploaded_files.append(uploaded_file) # Left UI Bar
ss.doclist.append(new_document) # Document list for RAG. # TODO(Jonathan Wang): Fix potential duplication.
### Get LLM Agent
with (st.spinner("Building LLM Agent for the input file...")):
agent = doclist_to_agent(ss.doclist)
ss.agent = agent
# All done!
st.toast("All done!")
# Display summary of new document in chat.
with messages_container:
ss.chat_messages.append(
{"role": "assistant", "content": new_document.summary_oneline}
)
with st.chat_message("assistant"):
st.markdown(new_document.summary_oneline)
### Cleaning
empty_cache()
gc.collect()
def handle_chat_message(user_message: str) -> str:
# Get Response
if (not hasattr(ss, "doclist") or len(ss.doclist) == 0):
return "Please upload a document to get started."
if (not hasattr(ss, "agent")):
warnings.warn("No LLM Agent found. Attempting to create one.", stacklevel=2)
with st.sidebar, (st.spinner("Building LLM Agent for the input file...")):
agent = doclist_to_agent(ss.doclist)
ss.agent = agent
response = ss.agent.query(user_message)
# Get citations if available
response = ss.citation_builder.get_citations(response, citation_threshold=60)
# Add citations to response text
response_with_citations = ss.citation_builder.add_citations_to_response(response)
return str(response_with_citations.response)
@st.cache_data
def get_pdf_display(
file: Any,
app_width: str = "100%",
app_height: str = "500",
starting_page_number: int | None = None
) -> str:
# Read file as binary
file_bytes = file.getbuffer()
base64_pdf = base64.b64encode(file_bytes).decode("utf-8")
pdf_display = f'<embed src="data:application/pdf;base64,{base64_pdf}"' # TODO(Jonathan Wang): iframe vs embed
if starting_page_number is not None:
pdf_display += f"#page={starting_page_number}"
pdf_display += f' width={app_width} height="{app_height}" type="application/pdf"></iembed>' # iframe vs embed
return (pdf_display)
# Upload
with st.sidebar:
uploaded_files = uploaded_files or [] # handle case when no file is uploaded
for uploaded_file in uploaded_files:
if (uploaded_file not in ss.uploaded_files):
handle_new_pdf(uploaded_file)
if (ss.selected_file is None and ss.uploaded_files):
ss.selected_file = ss.uploaded_files[-1]
file_names = [file.name for file in ss.uploaded_files]
selected_file_name = st.radio("Uploaded Files:", file_names)
if selected_file_name:
ss.selected_file = [file for file in ss.uploaded_files if file.name == selected_file_name][-1]
with col_left:
if (ss.selected_file is None):
selected_file_name = "Upload a file."
st.markdown(f"## {selected_file_name}")
elif (ss.selected_file is not None):
selected_file = ss.selected_file
selected_file_name = selected_file.name
if (selected_file.type == "application/pdf"):
pdf_display = get_pdf_display(selected_file, app_width="100%", app_height="550")
st.markdown(pdf_display, unsafe_allow_html=True)
# Chat
if prompt:
with messages_container:
with st.chat_message("user"):
st.markdown(prompt)
ss.chat_messages.append({"role": "user", "content": prompt})
with st.spinner("Generating response..."):
# Get Response
response = handle_chat_message(prompt)
if response:
ss.chat_messages.append(
{"role": "assistant", "content": response}
)
with st.chat_message("assistant"):
st.markdown(response)
|