Spaces:
Paused
Paused
File size: 11,350 Bytes
89cbc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
#####################################################
### DOCUMENT PROCESSOR [RETRIEVER]
#####################################################
# Jonathan Wang
# ABOUT:
# This project creates an app to chat with PDFs.
# This is the RETRIEVER
# which defines the main way that document
# snippets are identified.
#####################################################
## TODO:
#####################################################
## IMPORTS:
import logging
from typing import Optional, List, Tuple, Dict, cast
from collections import defaultdict
import streamlit as st
import numpy as np
from llama_index.core.utils import truncate_text
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core import VectorStoreIndex #, StorageContext,
from llama_index.core.schema import BaseNode, IndexNode, NodeWithScore, QueryBundle
from llama_index.core.callbacks.base import CallbackManager
# Own Modules:
from merger import _merge_on_scores
# Lazy Loading:
#####################################################
## CODE:
class RAGRetriever(BaseRetriever):
"""
Jonathan Wang's custom built retriever over our vector store.
Combination of Hybrid Retrieval (BM25 x Vector Embeddings) + AutoMergingRetriever
https://github.com/run-llama/llama_index/blob/main/llama-index-core/llama_index/core/retrievers/auto_merging_retriever.py
"""
def __init__(
self,
vector_store_index: VectorStoreIndex,
semantic_top_k: int = 10,
sparse_top_k: int = 6,
fusion_similarity_top_k: int = 10, # total number of snippets to retrieve after the Reicprocal Rerank.
semantic_weight_fraction: float = 0.6, # percentage weight to give to semantic cosine vs sparse bm25
merge_up_thresh: float = 0.5, # fraction of nodes needed to be retrieved to merge up to semantic level
verbose: bool = True,
callback_manager: Optional[CallbackManager] = None,
object_map: Optional[dict] = None,
objects: Optional[List[IndexNode]] = None,
) -> None:
"""Init params."""
self._vector_store_index = vector_store_index
self.sentence_vector_retriever = VectorIndexRetriever(
index=vector_store_index, similarity_top_k=semantic_top_k
)
self.sentence_bm25_retriever = BM25Retriever.from_defaults(
# nodes=list(vector_store_index.storage_context.docstore.docs.values())
index=vector_store_index # TODO: Confirm this works.
, similarity_top_k=sparse_top_k
)
self._fusion_similarity_top_k = fusion_similarity_top_k
self._semantic_weight_fraction = semantic_weight_fraction
self._merge_up_thresh = merge_up_thresh
super().__init__(
# callback_manager=callback_manager,
object_map=object_map,
objects=objects,
verbose=verbose,
)
@classmethod
def class_name(cls) -> str:
"""Class name."""
return "RAGRetriever"
def _get_parents_and_merge(
self, nodes: List[NodeWithScore]
) -> Tuple[List[NodeWithScore], bool]:
"""Get parents and merge nodes."""
# retrieve all parent nodes
parent_nodes: Dict[str, BaseNode] = {}
parent_cur_children_dict: Dict[str, List[NodeWithScore]] = defaultdict(list)
for node in nodes:
if node.node.parent_node is None:
continue
parent_node_info = node.node.parent_node
# Fetch actual parent node if doesn't exist in `parent_nodes` cache yet
parent_node_id = parent_node_info.node_id
if parent_node_id not in parent_nodes:
parent_node = self._vector_store_index.storage_context.docstore.get_document(
parent_node_id
)
parent_nodes[parent_node_id] = cast(BaseNode, parent_node)
# add reference to child from parent
parent_cur_children_dict[parent_node_id].append(node)
# compute ratios and "merge" nodes
# merging: delete some children nodes, add some parent nodes
node_ids_to_delete = set()
nodes_to_add: Dict[str, BaseNode] = {}
for parent_node_id, parent_node in parent_nodes.items():
parent_child_nodes = parent_node.child_nodes
parent_num_children = len(parent_child_nodes) if parent_child_nodes else 1
parent_cur_children = parent_cur_children_dict[parent_node_id]
ratio = len(parent_cur_children) / parent_num_children
# if ratio is high enough, merge up to the next level in the hierarchy
if ratio > self._merge_up_thresh:
node_ids_to_delete.update(
set({n.node.node_id for n in parent_cur_children})
)
parent_node_text = truncate_text(getattr(parent_node, 'text', ''), 100)
info_str = (
f"> Merging {len(parent_cur_children)} nodes into parent node.\n"
f"> Parent node id: {parent_node_id}.\n"
f"> Parent node text: {parent_node_text}\n"
)
# logger.info(info_str)
if self._verbose:
print(info_str)
# add parent node
# can try averaging score across embeddings for now
avg_score = sum(
[n.get_score() or 0.0 for n in parent_cur_children]
) / len(parent_cur_children)
parent_node_with_score = NodeWithScore(
node=parent_node, score=avg_score
)
nodes_to_add[parent_node_id] = parent_node_with_score # type: ignore (NodesWithScore is a child of BaseNode)
# delete old child nodes, add new parent nodes
new_nodes = [n for n in nodes if n.node.node_id not in node_ids_to_delete]
# add parent nodes
new_nodes.extend(list(nodes_to_add.values())) # type: ignore (NodesWithScore is a child of BaseNode)
is_changed = len(node_ids_to_delete) > 0
return new_nodes, is_changed
def _fill_in_nodes(
self, nodes: List[NodeWithScore]
) -> Tuple[List[NodeWithScore], bool]:
"""Fill in nodes."""
new_nodes = []
is_changed = False
for idx, node in enumerate(nodes):
new_nodes.append(node)
if idx >= len(nodes) - 1:
continue
cur_node = cast(BaseNode, node.node)
# if there's a node in the middle, add that to the queue
if (
cur_node.next_node is not None
and cur_node.next_node == nodes[idx + 1].node.prev_node
):
is_changed = True
next_node = self._vector_store_index.storage_context.docstore.get_document(
cur_node.next_node.node_id
)
next_node = cast(BaseNode, next_node)
next_node_text = truncate_text(getattr(next_node, 'text', ''), 100) # TODO: why not higher?
info_str = (
f"> Filling in node. Node id: {cur_node.next_node.node_id}"
f"> Node text: {next_node_text}\n"
)
# logger.info(info_str)
if self._verbose:
print(info_str)
# set score to be average of current node and next node
avg_score = (node.get_score() + nodes[idx + 1].get_score()) / 2
new_nodes.append(NodeWithScore(node=next_node, score=avg_score))
return new_nodes, is_changed
def _try_merging(
self, nodes: List[NodeWithScore]
) -> Tuple[List[NodeWithScore], bool]:
"""Try different ways to merge nodes."""
# first try filling in nodes
nodes, is_changed_0 = self._fill_in_nodes(nodes)
# then try merging nodes
nodes, is_changed_1 = self._get_parents_and_merge(nodes)
return nodes, is_changed_0 or is_changed_1
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve."""
# Get vector stores retrieved nodes
vector_sentence_nodes = self.sentence_vector_retriever.retrieve(query_bundle)# , **kwargs)
bm25_sentence_nodes = self.sentence_bm25_retriever.retrieve(query_bundle)# , **kwargs)
# Get initial nodes from hybrid search.
initial_nodes = _merge_on_scores(
vector_sentence_nodes,
bm25_sentence_nodes,
[getattr(a, "score", np.nan) for a in vector_sentence_nodes],
[getattr(b, "score", np.nan) for b in bm25_sentence_nodes],
a_weight=self._semantic_weight_fraction,
top_k=self._fusion_similarity_top_k
)
# Merge nodes
cur_nodes, is_changed = self._try_merging(list(initial_nodes)) # technically _merge_on_scores returns a sequence.
while is_changed:
cur_nodes, is_changed = self._try_merging(cur_nodes)
# sort by similarity
cur_nodes.sort(key=lambda x: x.get_score(), reverse=True)
# some other reranking and filtering node postprocessors here?
# https://docs.llamaindex.ai/en/stable/module_guides/querying/node_postprocessors/root.html
return cur_nodes
@st.cache_resource
def get_retriever(
_vector_store_index: VectorStoreIndex,
semantic_top_k: int = 10,
sparse_top_k: int = 6,
fusion_similarity_top_k: int = 10, # total number of snippets to retrieve after the Reicprocal Rerank.
semantic_weight_fraction: float = 0.6, # percentage weight to give to semantic chunks over sentence chunks
merge_up_thresh: float = 0.5, # fraction of nodes needed to be retrieved to merge up to semantic level
verbose: bool = True,
_callback_manager: Optional[CallbackManager] = None,
object_map: Optional[dict] = None,
objects: Optional[List[IndexNode]] = None,
) -> BaseRetriever:
"""Get the retriver to use.
Args:
vector_store_index (VectorStoreIndex): The vector store to query on.
semantic_top_k (int, optional): Top k nodes to retrieve semantically (cosine). Defaults to 10.
sparse_top_k (int, optional): Top k nodes to retrieve sparsely (BM25). Defaults to 6.
fusion_similarity_top_k (int, optional): Maximum number of nodes to retrieve after fusing. Defaults to 10.
callback_manager (Optional[CallbackManager], optional): Callback manager. Defaults to None.
object_map (Optional[dict], optional): Object map. Defaults to None.
objects (Optional[List[IndexNode]], optional): Objects list. Defaults to None.
Returns:
BaseRetriever: Retriever to use.
"""
retriever = RAGRetriever(
vector_store_index=_vector_store_index,
semantic_top_k=semantic_top_k,
sparse_top_k=sparse_top_k,
fusion_similarity_top_k=fusion_similarity_top_k,
semantic_weight_fraction=semantic_weight_fraction,
merge_up_thresh=merge_up_thresh,
verbose=verbose,
callback_manager=_callback_manager,
object_map=object_map,
objects=objects
)
return (retriever)
|