Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,265 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# λ©λͺ¨λ¦¬μ μλ
λ©λͺ¨λ¦¬ λλ μλμ λν΄ π€ Diffusers *μΆλ‘ *μ μ΅μ ννκΈ° μν λͺ κ°μ§ κΈ°μ κ³Ό μμ΄λμ΄λ₯Ό μ μν©λλ€.
μΌλ°μ μΌλ‘, memory-efficient attentionμ μν΄ [xFormers](https://github.com/facebookresearch/xformers) μ¬μ©μ μΆμ²νκΈ° λλ¬Έμ, μΆμ²νλ [μ€μΉ λ°©λ²](xformers)μ λ³΄κ³ μ€μΉν΄ 보μΈμ.
λ€μ μ€μ μ΄ μ±λ₯κ³Ό λ©λͺ¨λ¦¬μ λ―ΈμΉλ μν₯μ λν΄ μ€λͺ
ν©λλ€.
| | μ§μ°μκ° | μλ ν₯μ |
| ---------------- | ------- | ------- |
| λ³λ μ€μ μμ | 9.50s | x1 |
| cuDNN auto-tuner | 9.37s | x1.01 |
| fp16 | 3.61s | x2.63 |
| Channels Last λ©λͺ¨λ¦¬ νμ | 3.30s | x2.88 |
| traced UNet | 3.21s | x2.96 |
| memory-efficient attention | 2.63s | x3.61 |
<em>
NVIDIA TITAN RTXμμ 50 DDIM μ€ν
μ "a photo of an astronaut riding a horse on mars" ν둬ννΈλ‘ 512x512 ν¬κΈ°μ λ¨μΌ μ΄λ―Έμ§λ₯Ό μμ±νμμ΅λλ€.
</em>
## cuDNN auto-tuner νμ±ννκΈ°
[NVIDIA cuDNN](https://developer.nvidia.com/cudnn)μ 컨볼루μ
μ κ³μ°νλ λ§μ μκ³ λ¦¬μ¦μ μ§μν©λλ€. Autotunerλ 짧μ λ²€μΉλ§ν¬λ₯Ό μ€ννκ³ μ£Όμ΄μ§ μ
λ ₯ ν¬κΈ°μ λν΄ μ£Όμ΄μ§ νλμ¨μ΄μμ μ΅κ³ μ μ±λ₯μ κ°μ§ 컀λμ μ νν©λλ€.
**컨볼루μ
λ€νΈμν¬**λ₯Ό νμ©νκ³ μκΈ° λλ¬Έμ (λ€λ₯Έ μ νλ€μ νμ¬ μ§μλμ§ μμ), λ€μ μ€μ μ ν΅ν΄ μΆλ‘ μ μ cuDNN autotunerλ₯Ό νμ±νν μ μμ΅λλ€:
```python
import torch
torch.backends.cudnn.benchmark = True
```
### fp32 λμ tf32 μ¬μ©νκΈ° (Ampere λ° μ΄ν CUDA μ₯μΉλ€μμ)
Ampere λ° μ΄ν CUDA μ₯μΉμμ νλ ¬κ³± λ° μ»¨λ³Όλ£¨μ
μ TensorFloat32(TF32) λͺ¨λλ₯Ό μ¬μ©νμ¬ λ λΉ λ₯΄μ§λ§ μ½κ° λ μ νν μ μμ΅λλ€.
κΈ°λ³Έμ μΌλ‘ PyTorchλ 컨볼루μ
μ λν΄ TF32 λͺ¨λλ₯Ό νμ±ννμ§λ§ νλ ¬ κ³±μ
μ νμ±ννμ§ μμ΅λλ€.
λ€νΈμν¬μ μμ ν float32 μ λ°λκ° νμν κ²½μ°κ° μλλ©΄ νλ ¬ κ³±μ
μ λν΄μλ μ΄ μ€μ μ νμ±ννλ κ²μ΄ μ’μ΅λλ€.
μ΄λ μΌλ°μ μΌλ‘ 무μν μ μλ μμΉμ μ νλ μμ€μ΄ μμ§λ§, κ³μ° μλλ₯Ό ν¬κ² λμΌ μ μμ΅λλ€.
κ·Έκ²μ λν΄ [μ¬κΈ°](https://huggingface.co/docs/transformers/v4.18.0/en/performance#tf32)μ λ μ½μ μ μμ΅λλ€.
μΆλ‘ νκΈ° μ μ λ€μμ μΆκ°νκΈ°λ§ νλ©΄ λ©λλ€:
```python
import torch
torch.backends.cuda.matmul.allow_tf32 = True
```
## λ°μ λ°λ κ°μ€μΉ
λ λ§μ GPU λ©λͺ¨λ¦¬λ₯Ό μ μ½νκ³ λ λΉ λ₯Έ μλλ₯Ό μ»κΈ° μν΄ λͺ¨λΈ κ°μ€μΉλ₯Ό λ°μ λ°λ(half precision)λ‘ μ§μ λΆλ¬μ€κ³ μ€νν μ μμ΅λλ€.
μ¬κΈ°μλ `fp16`μ΄λΌλ λΈλμΉμ μ μ₯λ float16 λ²μ μ κ°μ€μΉλ₯Ό λΆλ¬μ€κ³ , κ·Έ λ `float16` μ νμ μ¬μ©νλλ‘ PyTorchμ μ§μνλ μμ
μ΄ ν¬ν¨λ©λλ€.
```Python
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
<Tip warning={true}>
μ΄λ€ νμ΄νλΌμΈμμλ [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast) λ₯Ό μ¬μ©νλ κ²μ κ²μμ μ΄λ―Έμ§λ₯Ό μμ±ν μ μκ³ , μμν float16 μ λ°λλ₯Ό μ¬μ©νλ κ²λ³΄λ€ νμ λ리기 λλ¬Έμ μ¬μ©νμ§ μλ κ²μ΄ μ’μ΅λλ€.
</Tip>
## μΆκ° λ©λͺ¨λ¦¬ μ μ½μ μν μ¬λΌμ΄μ€ μ΄ν
μ
μΆκ° λ©λͺ¨λ¦¬ μ μ½μ μν΄, ν λ²μ λͺ¨λ κ³μ°νλ λμ λ¨κ³μ μΌλ‘ κ³μ°μ μννλ μ¬λΌμ΄μ€ λ²μ μ μ΄ν
μ
(attention)μ μ¬μ©ν μ μμ΅λλ€.
<Tip>
Attention slicingμ λͺ¨λΈμ΄ νλ μ΄μμ μ΄ν
μ
ν€λλ₯Ό μ¬μ©νλ ν, λ°°μΉ ν¬κΈ°κ° 1μΈ κ²½μ°μλ μ μ©ν©λλ€.
νλ μ΄μμ μ΄ν
μ
ν€λκ° μλ κ²½μ° *QK^T* μ΄ν
μ
맀νΈλ¦μ€λ μλΉν μμ λ©λͺ¨λ¦¬λ₯Ό μ μ½ν μ μλ κ° ν€λμ λν΄ μμ°¨μ μΌλ‘ κ³μ°λ μ μμ΅λλ€.
</Tip>
κ° ν€λμ λν΄ μμ°¨μ μΌλ‘ μ΄ν
μ
κ³μ°μ μννλ €λ©΄, λ€μκ³Ό κ°μ΄ μΆλ‘ μ μ νμ΄νλΌμΈμμ [`~StableDiffusionPipeline.enable_attention_slicing`]λ₯Ό νΈμΆνλ©΄ λ©λλ€:
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_attention_slicing()
image = pipe(prompt).images[0]
```
μΆλ‘ μκ°μ΄ μ½ 10% λλ €μ§λ μ½κ°μ μ±λ₯ μ νκ° μμ§λ§ μ΄ λ°©λ²μ μ¬μ©νλ©΄ 3.2GB μ λμ μμ VRAMμΌλ‘λ Stable Diffusionμ μ¬μ©ν μ μμ΅λλ€!
## λ ν° λ°°μΉλ₯Ό μν sliced VAE λμ½λ
μ νλ VRAMμμ λκ·λͺ¨ μ΄λ―Έμ§ λ°°μΉλ₯Ό λμ½λ©νκ±°λ 32κ° μ΄μμ μ΄λ―Έμ§κ° ν¬ν¨λ λ°°μΉλ₯Ό νμ±ννκΈ° μν΄, λ°°μΉμ latent μ΄λ―Έμ§λ₯Ό ν λ²μ νλμ© λμ½λ©νλ μ¬λΌμ΄μ€ VAE λμ½λλ₯Ό μ¬μ©ν μ μμ΅λλ€.
μ΄λ₯Ό [`~StableDiffusionPipeline.enable_attention_slicing`] λλ [`~StableDiffusionPipeline.enable_xformers_memory_efficient_attention`]κ³Ό κ²°ν©νμ¬ λ©λͺ¨λ¦¬ μ¬μ©μ μΆκ°λ‘ μ΅μνν μ μμ΅λλ€.
VAE λμ½λλ₯Ό ν λ²μ νλμ© μννλ €λ©΄ μΆλ‘ μ μ νμ΄νλΌμΈμμ [`~StableDiffusionPipeline.enable_vae_slicing`]μ νΈμΆν©λλ€. μλ₯Ό λ€μ΄:
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_vae_slicing()
images = pipe([prompt] * 32).images
```
λ€μ€ μ΄λ―Έμ§ λ°°μΉμμ VAE λμ½λκ° μ½κ°μ μ±λ₯ ν₯μμ΄ μ΄λ£¨μ΄μ§λλ€. λ¨μΌ μ΄λ―Έμ§ λ°°μΉμμλ μ±λ₯ μν₯μ μμ΅λλ€.
<a name="sequential_offloading"></a>
## λ©λͺ¨λ¦¬ μ μ½μ μν΄ κ°μ κΈ°λ₯μ μ¬μ©νμ¬ CPUλ‘ μ€νλ‘λ©
μΆκ° λ©λͺ¨λ¦¬ μ μ½μ μν΄ κ°μ€μΉλ₯Ό CPUλ‘ μ€νλ‘λνκ³ μλ°©ν₯ μ λ¬μ μνν λλ§ GPUλ‘ λ‘λν μ μμ΅λλ€.
CPU μ€νλ‘λ©μ μννλ €λ©΄ [`~StableDiffusionPipeline.enable_sequential_cpu_offload`]λ₯Ό νΈμΆνκΈ°λ§ νλ©΄ λ©λλ€:
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_sequential_cpu_offload()
image = pipe(prompt).images[0]
```
κ·Έλ¬λ©΄ λ©λͺ¨λ¦¬ μλΉλ₯Ό 3GB λ―Έλ§μΌλ‘ μ€μΌ μ μμ΅λλ€.
μ°Έκ³ λ‘ μ΄ λ°©λ²μ μ 체 λͺ¨λΈμ΄ μλ μλΈλͺ¨λ μμ€μμ μλν©λλ€. μ΄λ λ©λͺ¨λ¦¬ μλΉλ₯Ό μ΅μννλ κ°μ₯ μ’μ λ°©λ²μ΄μ§λ§ νλ‘μΈμ€μ λ°λ³΅μ νΉμ±μΌλ‘ μΈν΄ μΆλ‘ μλκ° ν¨μ¬ λ립λλ€. νμ΄νλΌμΈμ UNet κ΅¬μ± μμλ μ¬λ¬ λ² μ€νλ©λλ€('num_inference_steps' λ§νΌ). λ§€λ² UNetμ μλ‘ λ€λ₯Έ μλΈλͺ¨λμ΄ μμ°¨μ μΌλ‘ μ¨λ‘λλ λ€μ νμμ λ°λΌ μ€νλ‘λλλ―λ‘ λ©λͺ¨λ¦¬ μ΄λ νμκ° λ§μ΅λλ€.
<Tip>
λ λ€λ₯Έ μ΅μ ν λ°©λ²μΈ <a href="#model_offloading">λͺ¨λΈ μ€νλ‘λ©</a>μ μ¬μ©νλ κ²μ κ³ λ €νμμμ€. μ΄λ ν¨μ¬ λΉ λ₯΄μ§λ§ λ©λͺ¨λ¦¬ μ μ½μ΄ ν¬μ§λ μμ΅λλ€.
</Tip>
λν ttention slicingκ³Ό μ°κ²°ν΄μ μ΅μ λ©λͺ¨λ¦¬(< 2GB)λ‘λ λμν μ μμ΅λλ€.
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_sequential_cpu_offload()
pipe.enable_attention_slicing(1)
image = pipe(prompt).images[0]
```
**μ°Έκ³ **: 'enable_sequential_cpu_offload()'λ₯Ό μ¬μ©ν λ, 미리 νμ΄νλΌμΈμ CUDAλ‘ μ΄λνμ§ **μλ** κ²μ΄ μ€μν©λλ€.κ·Έλ μ§ μμΌλ©΄ λ©λͺ¨λ¦¬ μλΉμ μ΄λμ΄ μ΅μνλ©λλ€. λ λ§μ μ 보λ₯Ό μν΄ [μ΄ μ΄μ](https://github.com/huggingface/diffusers/issues/1934)λ₯Ό 보μΈμ.
<a name="model_offloading"></a>
## λΉ λ₯Έ μΆλ‘ κ³Ό λ©λͺ¨λ¦¬ λ©λͺ¨λ¦¬ μ μ½μ μν λͺ¨λΈ μ€νλ‘λ©
[μμ°¨μ CPU μ€νλ‘λ©](#sequential_offloading)μ μ΄μ μΉμ
μμ μ€λͺ
ν κ²μ²λΌ λ§μ λ©λͺ¨λ¦¬λ₯Ό 보쑴νμ§λ§ νμμ λ°λΌ μλΈλͺ¨λμ GPUλ‘ μ΄λνκ³ μ λͺ¨λμ΄ μ€νλ λ μ¦μ CPUλ‘ λ°νλκΈ° λλ¬Έμ μΆλ‘ μλκ° λλ €μ§λλ€.
μ 체 λͺ¨λΈ μ€νλ‘λ©μ κ° λͺ¨λΈμ κ΅¬μ± μμμΈ _modules_μ μ²λ¦¬νλ λμ , μ 체 λͺ¨λΈμ GPUλ‘ μ΄λνλ λμμ
λλ€. μ΄λ‘ μΈν΄ μΆλ‘ μκ°μ λ―ΈμΉλ μν₯μ λ―Έλ―Ένμ§λ§(νμ΄νλΌμΈμ 'cuda'λ‘ μ΄λνλ κ²κ³Ό λΉκ΅νμ¬) μ¬μ ν μ½κ°μ λ©λͺ¨λ¦¬λ₯Ό μ μ½ν μ μμ΅λλ€.
μ΄ μλ리μ€μμλ νμ΄νλΌμΈμ μ£Όμ κ΅¬μ± μμ μ€ νλλ§(μΌλ°μ μΌλ‘ ν
μ€νΈ μΈμ½λ, unet λ° vae) GPUμ μκ³ , λλ¨Έμ§λ CPUμμ λκΈ°ν κ²μ
λλ€.
μ¬λ¬ λ°λ³΅μ μν΄ μ€νλλ UNetκ³Ό κ°μ κ΅¬μ± μμλ λ μ΄μ νμνμ§ μμ λκΉμ§ GPUμ λ¨μ μμ΅λλ€.
μ΄ κΈ°λ₯μ μλμ κ°μ΄ νμ΄νλΌμΈμμ `enable_model_cpu_offload()`λ₯Ό νΈμΆνμ¬ νμ±νν μ μμ΅λλ€.
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_model_cpu_offload()
image = pipe(prompt).images[0]
```
μ΄λ μΆκ°μ μΈ λ©λͺ¨λ¦¬ μ μ½μ μν attention slicingκ³Όλ νΈνλ©λλ€.
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing(1)
image = pipe(prompt).images[0]
```
<Tip>
μ΄ κΈ°λ₯μ μ¬μ©νλ €λ©΄ 'accelerate' λ²μ 0.17.0 μ΄μμ΄ νμν©λλ€.
</Tip>
## Channels Last λ©λͺ¨λ¦¬ νμ μ¬μ©νκΈ°
Channels Last λ©λͺ¨λ¦¬ νμμ μ°¨μ μμλ₯Ό 보쑴νλ λ©λͺ¨λ¦¬μμ NCHW ν
μ λ°°μ΄μ λ체νλ λ°©λ²μ
λλ€.
Channels Last ν
μλ μ±λμ΄ κ°μ₯ μ‘°λ°ν μ°¨μμ΄ λλ λ°©μμΌλ‘ μ λ ¬λ©λλ€(μΌλͺ
ν½μ
λΉ μ΄λ―Έμ§λ₯Ό μ μ₯).
νμ¬ λͺ¨λ μ°μ°μ Channels Last νμμ μ§μνλ κ²μ μλλΌ μ±λ₯μ΄ μ νλ μ μμΌλ―λ‘, μ¬μ©ν΄λ³΄κ³ λͺ¨λΈμ μ μλνλμ§ νμΈνλ κ²μ΄ μ’μ΅λλ€.
μλ₯Ό λ€μ΄ νμ΄νλΌμΈμ UNet λͺ¨λΈμ΄ channels Last νμμ μ¬μ©νλλ‘ μ€μ νλ €λ©΄ λ€μμ μ¬μ©ν μ μμ΅λλ€:
```python
print(pipe.unet.conv_out.state_dict()["weight"].stride()) # (2880, 9, 3, 1)
pipe.unet.to(memory_format=torch.channels_last) # in-place μ°μ°
# 2λ²μ§Έ μ°¨μμμ μ€νΈλΌμ΄λ 1μ κ°μ§λ (2880, 1, 960, 320)λ‘, μ°μ°μ΄ μλν¨μ μ¦λͺ
ν©λλ€.
print(pipe.unet.conv_out.state_dict()["weight"].stride())
```
## μΆμ (tracing)
μΆμ μ λͺ¨λΈμ ν΅ν΄ μμ μ
λ ₯ ν
μλ₯Ό ν΅ν΄ μ€νλλλ°, ν΄λΉ μ
λ ₯μ΄ λͺ¨λΈμ λ μ΄μ΄λ₯Ό ν΅κ³Όν λ νΈμΆλλ μμ
μ μΊ‘μ²νμ¬ μ€ν νμΌ λλ 'ScriptFunction'μ΄ λ°νλλλ‘ νκ³ , μ΄λ just-in-time μ»΄νμΌλ‘ μ΅μ νλ©λλ€.
UNet λͺ¨λΈμ μΆμ νκΈ° μν΄ λ€μμ μ¬μ©ν μ μμ΅λλ€:
```python
import time
import torch
from diffusers import StableDiffusionPipeline
import functools
# torch κΈ°μΈκΈ° λΉνμ±ν
torch.set_grad_enabled(False)
# λ³μ μ€μ
n_experiments = 2
unet_runs_per_experiment = 50
# μ
λ ₯ λΆλ¬μ€κΈ°
def generate_inputs():
sample = torch.randn((2, 4, 64, 64), device="cuda", dtype=torch.float16)
timestep = torch.rand(1, device="cuda", dtype=torch.float16) * 999
encoder_hidden_states = torch.randn((2, 77, 768), device="cuda", dtype=torch.float16)
return sample, timestep, encoder_hidden_states
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
unet = pipe.unet
unet.eval()
unet.to(memory_format=torch.channels_last) # Channels Last λ©λͺ¨λ¦¬ νμ μ¬μ©
unet.forward = functools.partial(unet.forward, return_dict=False) # return_dict=Falseμ κΈ°λ³Έκ°μΌλ‘ μ€μ
# μλ°μ
for _ in range(3):
with torch.inference_mode():
inputs = generate_inputs()
orig_output = unet(*inputs)
# μΆμ
print("tracing..")
unet_traced = torch.jit.trace(unet, inputs)
unet_traced.eval()
print("done tracing")
# μλ°μ
λ° κ·Έλν μ΅μ ν
for _ in range(5):
with torch.inference_mode():
inputs = generate_inputs()
orig_output = unet_traced(*inputs)
# λ²€μΉλ§νΉ
with torch.inference_mode():
for _ in range(n_experiments):
torch.cuda.synchronize()
start_time = time.time()
for _ in range(unet_runs_per_experiment):
orig_output = unet_traced(*inputs)
torch.cuda.synchronize()
print(f"unet traced inference took {time.time() - start_time:.2f} seconds")
for _ in range(n_experiments):
torch.cuda.synchronize()
start_time = time.time()
for _ in range(unet_runs_per_experiment):
orig_output = unet(*inputs)
torch.cuda.synchronize()
print(f"unet inference took {time.time() - start_time:.2f} seconds")
# λͺ¨λΈ μ μ₯
unet_traced.save("unet_traced.pt")
```
κ·Έ λ€μ, νμ΄νλΌμΈμ `unet` νΉμ±μ λ€μκ³Ό κ°μ΄ μΆμ λ λͺ¨λΈλ‘ λ°κΏ μ μμ΅λλ€.
```python
from diffusers import StableDiffusionPipeline
import torch
from dataclasses import dataclass
@dataclass
class UNet2DConditionOutput:
sample: torch.Tensor
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
# jitted unet μ¬μ©
unet_traced = torch.jit.load("unet_traced.pt")
# pipe.unet μμ
class TracedUNet(torch.nn.Module):
def __init__(self):
super().__init__()
self.in_channels = pipe.unet.config.in_channels
self.device = pipe.unet.device
def forward(self, latent_model_input, t, encoder_hidden_states):
sample = unet_traced(latent_model_input, t, encoder_hidden_states)[0]
return UNet2DConditionOutput(sample=sample)
pipe.unet = TracedUNet()
with torch.inference_mode():
image = pipe([prompt] * 1, num_inference_steps=50).images[0]
```
## Memory-efficient attention
μ΄ν
μ
λΈλ‘μ λμνμ μ΅μ ννλ μ΅κ·Ό μμ
μΌλ‘ GPU λ©λͺ¨λ¦¬ μ¬μ©λμ΄ ν¬κ² ν₯μλκ³ ν₯μλμμ΅λλ€.
@tridaoμ κ°μ₯ μ΅κ·Όμ νλμ μ΄ν
μ
: [code](https://github.com/HazyResearch/flash-attention), [paper](https://arxiv.org/pdf/2205.14135.pdf).
λ°°μΉ ν¬κΈ° 1(ν둬ννΈ 1κ°)μ 512x512 ν¬κΈ°λ‘ μΆλ‘ μ μ€νν λ λͺ κ°μ§ Nvidia GPUμμ μ»μ μλ ν₯μμ λ€μκ³Ό κ°μ΅λλ€:
| GPU | κΈ°μ€ μ΄ν
μ
FP16 | λ©λͺ¨λ¦¬ ν¨μ¨μ μΈ μ΄ν
μ
FP16 |
|------------------ |--------------------- |--------------------------------- |
| NVIDIA Tesla T4 | 3.5it/s | 5.5it/s |
| NVIDIA 3060 RTX | 4.6it/s | 7.8it/s |
| NVIDIA A10G | 8.88it/s | 15.6it/s |
| NVIDIA RTX A6000 | 11.7it/s | 21.09it/s |
| NVIDIA TITAN RTX | 12.51it/s | 18.22it/s |
| A100-SXM4-40GB | 18.6it/s | 29.it/s |
| A100-SXM-80GB | 18.7it/s | 29.5it/s |
μ΄λ₯Ό νμ©νλ €λ©΄ λ€μμ λ§μ‘±ν΄μΌ ν©λλ€:
- PyTorch > 1.12
- Cuda μ¬μ© κ°λ₯
- [xformers λΌμ΄λΈλ¬λ¦¬λ₯Ό μ€μΉν¨](xformers)
```python
from diffusers import StableDiffusionPipeline
import torch
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
with torch.inference_mode():
sample = pipe("a small cat")
# μ ν: μ΄λ₯Ό λΉνμ±ν νκΈ° μν΄ λ€μμ μ¬μ©ν μ μμ΅λλ€.
# pipe.disable_xformers_memory_efficient_attention()
```
|